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Worked Example for Factor Analysis 
 

This example uses the ASA software integrated into Excel or SPSS (www.asastat.com). 
ASA is, in part, a point-and-click interface to R but analyses can be conducted from 
within SPSS or Excel. All data are hypothetical. We assume you have read the primer on 
factor analysis. 

Measures of the occurrence of 9 common syndrome clusters associated with post-
traumatic stress disorder (PTSD) were obtained for a sample of war veterans who 
suffered high levels of stress during war. The symptoms assessments were the occurrence 
of (1) upsetting memories from the past event, (2) nightmares, (3) intense reactions to 
reminders of the event, (4) avoiding activities that might remind one of the event, (5) loss 
of interest in activities and life in general, (6) feeling emotionally numb, (7) excessive 
worrying, (8) difficulty concentrating, and (9) feeling jumpy and easily startled. The 
frequency/severity of each symptom category was assessed with multiple items and 
averaged within a category, with scores ranging from 0 to 10 for each category. Higher 
scores indicated the symptom category occurred more frequently and was more 
problematic in the veterans’ lives. The variables were labeled ptsd1 through ptsd9 in the 
data set. 

The symptom categories were correlated with one another and we want to test if the 
correlations among the categories can be accounted for by latent factors reflecting 
generalized stress reactions. We decide to conduct an exploratory factor analysis of the 
nine symptom categories. We make an initial decision to use maximum likelihood 
extraction because it has a strong underlying statistical theory. We plan to use an oblique 
rotation, geomin, because it tends to be among the better rotation methods available (see 
the primer on factor analysis for details). 

The ASA software routinely reports confidence intervals for key parameters in 
statistical models. There are different ways of presenting confidence intervals. One 
strategy is to report them directly. Another strategy is to report them as margins of error, 
much like the margins of error you see for political polls on television or in print media. 
In this case, one calculates the half width of the confidence interval and reports it in “plus 
or minus” format. For example, in a political poll, you might be told that the percent of 
people endorsing a candidate is 50% ±5%. In this case, the confidence interval is 45% to 
55%. This is an efficient way of summarizing the interval. In some cases, confidence 
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intervals are asymmetric. When this occurs, some researchers will report the lower and 
upper margin of error separately. Alternatively, the researcher might calculate the 
absolute difference between the lower limit and the parameter estimate as well as the 
absolute difference between upper limit of the interval minus the parameter estimate and 
then report whichever difference is larger using the ± format. Some analysts prefer the 
use of credible intervals in Bayesian analytic frameworks instead of confidence intervals 
for characterizing margins of error (see Curran, 2005). 

PRELIMINARY ANALYSES 

The first step in the analysis is to gain a sense of the distributions of the variables and to 
determine if issues with outliers, non-normality, and model misspecification will likely 
arise. We do not present these analyses here (see the ASA software for worked examples 
of them), but all was in order, so we proceed accordingly. 

THE FACTOR ANALYSIS 

The Number of Factors 

Our first task is to determine the number of factors needed to account for the correlations 
between symptoms. We approach the matter from multiple perspectives. We first conduct 
an analysis for a single factor model to obtain traditional statistics typically relied upon 
by researchers for choosing factors. Here is the factor information for the correlation 
matrix as focused on eigenvalues and percent of variance accounted for: 
 
FACTOR INFORMATION BASED ON CORRELATION MATRIX 
 
           Eigenval    Percent     Cum Pct  
 
Factor 1    3.3418      37.1313     37.1313 
Factor 2    1.7543      19.4918     56.6230 
Factor 3    1.5441      17.1563     73.7794 
Factor 4    0.4513      5.0140      78.7933 
Factor 5    0.4121      4.5787      83.3720 
Factor 6    0.3976      4.4175      87.7896 
Factor 7    0.3841      4.2683      92.0579 
Factor 8    0.3688      4.0982      96.1561 
Factor 9    0.3460      3.8439      100.0000    
 
Figure 6.1 presents the associated scree plot: 
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FIGURE 6.1. Scree Plot 
 
 
The line on the plot labeled PC flattens at factor 4. The general trend suggests a three 
factor solution. The line labeled FA is for factor extraction using the reduced correlation 
matrix (i.e., a correlation matrix with communalities in the diagonal). To make sense of 
it, we need to consider the output associated with the reduced correlation matrix: 
 
FACTOR INFORMATION BASED ON REDUCED CORRELATION MATRIX 
 
           Eigenval    Percent     Cum Pct  
 
Factor 1    2.6470      102.8980    102.8980 
Factor 2    1.0311      40.0826     142.9805 
Factor 3    0.8187      31.8263     174.8069 
Factor 4   -0.1268     -4.9286      169.8783 
Factor 5   -0.1306     -5.0754      164.8029 
Factor 6   -0.3350     -13.0218     151.7811 
Factor 7   -0.3927     -15.2657     136.5154 
Factor 8   -0.4354     -16.9263     119.5892 
Factor 9   -0.5039     -19.5892     100.0000   
 
The eigenvalues for the correlation matrix reflect the variance accounted for by each 
factor. The eigenvalues for the reduced correlation matrix, by contrast, reflect the shared 
variance accounted for by each factor. In the present case, a one factor model was fit, so 
all of the shared variance must lie in the first factor. This is why the first entry under the 
column for percent of (shared) variance equals 100% (it is 102% because of rounding). 
Here is the same table when we fit a two factor model instead of a one factor model: 
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FACTOR INFORMATION BASED ON REDUCED CORRELATION MATRIX 
 
           Eigenval    Percent     Cum Pct  
 
Factor 1    2.8115      68.6398     68.6398 
Factor 2    1.3468      32.8801     101.5199 
Factor 3    0.8491      20.7308     122.2507 
Factor 4    0.0100      0.2437      122.4944 
Factor 5   -0.0067     -0.1641      122.3303 
Factor 6   -0.0150     -0.3671      121.9633 
Factor 7   -0.0303     -0.7408      121.2225 
Factor 8   -0.4091     -9.9867      111.2358 
Factor 9   -0.4602     -11.2358     100.0000 
 
Note that the solution reaches 100% explained shared variance at two factors, with the 
first factor accounting for about 68% of the shared variance and the second factor 
accounting for about 32% of the shared variance. Here is the same table when we fit a 
three factor model to the data: 
 
FACTOR INFORMATION BASED ON REDUCED CORRELATION MATRIX 
 
           Eigenval    Percent     Cum Pct  
 
Factor 1    2.9486      53.9485     53.9485 
Factor 2    1.3697      25.0592     79.0077 
Factor 3    1.1474      20.9923     99.9999 
Factor 4    0.0409      0.7483      100.7482 
Factor 5    0.0158      0.2897      101.0379 
Factor 6    0.0056      0.1023      101.1401 
Factor 7   -0.0030     -0.0547      101.0854 
Factor 8   -0.0198     -0.3624      100.7231 
Factor 9   -0.0395     -0.7231      100.0000 
 
The solution reaches 100% explained shared variance at three factors, with the first factor 
accounting for about 54% of the shared variance, the second factor accounting for about 
25% of the shared variance, and the third factor accounting for about 21% of the shared 
variance. Here is the table for a four factor solution: 
 
FACTOR INFORMATION BASED ON REDUCED CORRELATION MATRIX 
 
           Eigenval    Percent     Cum Pct  
 
Factor 1    2.9777      52.1785     52.1785 
Factor 2    1.3784      24.1540     76.3325 
Factor 3    1.1909      20.8685     97.2011 
Factor 4    0.1597      2.7988      99.9999 
Factor 5    0.0181      0.3166      100.3165 
Factor 6    0.0059      0.1026      100.4191 
Factor 7   -0.0001     -0.0020      100.4171 
Factor 8   -0.0023     -0.0403      100.3769 
Factor 9   -0.0215     -0.3769      100.0000   
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The solution reaches 100% explained shared variance at four factors, but note the small 
amount of the shared variance accounted for by the fourth factor (2.8%). This suggests a 
three factor solution, which is consistent with the analysis of the original correlation 
matrix (the PC line in the scree plot).  

The output also includes a formal parallel analysis (Zwick & Velicer, 1986) to 
decide the number of factors. Here are the results for it: 
 
NUMBER OF FACTORS BASED ON PARALLEL ANALYSIS 
 
Number of factors: 3 
 

The parallel analysis also suggests a three factor model. 
We next conduct analyses for a one factor model, a two factor model, a three factor 

model, and a four factor model so we can compare fit indices for each model (see the 
factor analysis primer for details). Here are the chi square tests of model fit for each 
model, taken from each of the four outputs: 
 
One factor model:    Chi square = 1367.4   df = 27    p < 0.05   
Two factor model:    Chi square = 610.3    df = 19    p < 0.05   
Three factor model:  Chi square = 9.36     df = 12    p = 0.67    
Four factor model:   Chi square = 2.09     df = 6     p = 0.91   
 
Both the one factor and two factors models yield statistically significant and, hence, poor 
model fits. The three and four factor models yield non-statistically significant results, 
which are consistent with good model fit.  

Preacher et al. (2013) recommend using the RMSEA fit statistic and its 90% 
confidence interval to make decisions about the number of factors to retain. Starting with 
a one factor model, we successively increase the number of factors until we find the first 
model that has a lower bound confidence interval value less than the traditional close fit 
RMSEA standard of 0.05. This model is the number of factors to retain (see the primer on 
factor analysis for details). Here are the relevant statistics, gathered from the different 
outputs: 
 
One factor model:   RMSEA = 0.26, 90%  CI = 0.25 to 0.27   
Two factor model:   RMSEA = 0.20, 90%  CI = 0.19 to 0.22   
Three factor model: RMSEA = 0.00, 90%  CI = 0.00 to 0.037   
Four factor model:  RMSEA = 0.00, 90%  CI = 0.00 to 0.047   
 
The first model where the lower bound CI for the RMSEA is less than 0.05 is a three 
factor model. Indeed, even the upper bound CI of the three factor model (0.037) is less 
than the traditional RMSEA standard of 0.05 for defining close fit, so the three factor 
model is quite viable.  
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We also can perform significance tests of incremental fit for successively more 
complex models to provide perspectives on the appropriate number of factors to retain. 
Rather than using the traditional nested chi square difference test that evaluates a null 
hypothesis of zero incremental fit by a more complex model, we use instead the approach 
that tests for non-trivial (rather than 0) incremental fit (see the factor analysis primer for 
details). Specifically, we test for RMSEA differences greater than the close fit standard of 
0.05 using the method of Liu and Bentler (2011) in the ASA program “Structural 
Equation Modeling > Model Fit and Model Comparison > RMSEA for nested models 
with close fit null hypothesis: Liu and Bentler.”  Here are the results comparing the two 
factor model with the one factor model: 
 
RMSEA null equivalence standard: 0.05 
Sample size: 750 
Unconstrained model degrees of freedom: 19 
Constrained model degrees of freedom: 27 
Traditional chi square difference between models: 757.02 
 
RESULTS 
 
RMSEA standard: 0.05 
Model df difference: 8 
p value for incremental fit against standard: 0.00000 
 
The comparison is statistically significant (p < 0.05), indicating that a two factor model 
improves fit over a one factor by more than an RMSEA difference standard of 0.05. This 
comparison also was statistically significant for a three factor model compared to a two 
factor model (p < 0.05) but not for a four factor model relative to a three factor model (p 
= 0.99). Thus, significance tests of non-trivial incremental fit using differences in 
RMSEAs favor the three factor model.    

Here are the HBIC values for the four models: 
 
HBIC for one factor model:    1188.67 
HBIC for two factor model:     484.56 
HBIC for three factor model:   -70.08 
HBIC for four factor model:    -37.63 
 
For HBICs, we favor models with the lowest HBIC, which is the three factor model. The 
three factor model is superior to the other models by a substantial margin (see the primer 
on information theory fit indices for details).  

We also can compute the comparative fit index (CFI) to determine the proportion of 
incremental fit that a given model yields relative to the model with one factor less. We 
use the ASA program “Structural Equation Modeling > Model Fit and Model 
Comparison > CFI comparing two models.”  Here are the results, summarized across the 
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three model difference analyses: 
 
CFI for two versus one factor model:     0.56 
CFI for three versus two factor model:   1.00 
CFI for four versus three factor model:  0.00 
 

The two factor model improved prediction over the one factor model by 56% and the 
three factor model improved prediction over the two factor model by 100% or more. The 
four factor model did not improve prediction over the three factor model, after taking into 
account model complexity as reflected by the model degrees of freedom.  

Finally, we can compare the models in terms of their average (root mean square) 
discrepancy between predicted and observed correlations. Here are the results, 
summarized across the four runs: 
 
One factor model average disparity: 0.191 
Two factor model average disparity: 0.130 
One factor model average disparity: 0.007 
One factor model average disparity: 0.003 
 

The disparity drops dramatically for the three factor model relative to the one and two 
factor models and only trivially improves for the four factor model. 

Everything points to a three factor model. This type of convergence will not always 
occur. Sometimes different tests will lead to different conclusions. When this happens, 
we tend to give greater weight to the less subjective methods that are accommodating of 
sampling error, such as the Preacher et al. (2013) strategy based on RMSEAs. We also 
place a premium on factor interpretability, preferring solutions that make the most 
conceptual sense.    

Model Fit 

Given a three factor model, it is useful to examine indices of how well that model fits the 
data. Here is the relevant output: 
 
 
MODEL FIT INFORMATION 
(-9999 means could not be computed) 
 
   Root mean square of off-diagonal correlation residuals: 0.007381 
 
   RMSEA: 0.0 
   90% confidence interval: .0000 to .0372 
   Lower and upper margin of error: 0.00000, 0.03720 
 
   Haughton Bayesian Information Criterion: -70.083105 
   95% confidence interval: -9999 to -68.7360 
   Lower and upper margin of error: -9999, 1.34709 
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   Tucker-Lewis index: 1.003166 
   Comparative fit index: 1.0 
 
   Model chi square: 9.357773 
   Model df: 12 
   Model p value: 0.672106 
   Model objective (fit function): 0.012592 
    
   Null model chi square: 2546.388 
   Null model df: 36 
   Null model RMSEA: 0.305125 
 
The average absolute disparity between predicted and observed correlations was only 
0.007. The RMSEA was 0 with a 90% confidence interval of 0 to 0.037. Even the upper 
limit of the confidence interval is less than the traditional standard for a close fitting 
model (0.05). The comparative fit index (CFI) was 1.00, which exceeds the traditional 
standard of a good fitting model of 0.95 or greater. The chi square test for model fit was 
statistically non-significant (chi square = 9.36, df = 12, p < 0.68), which also is consistent 
with a good model fit. Everything points to a good fitting model. (As an aside, Kenny et 
al. (2015) discourage the use of the RMSEA statistic if the RMSEA for the null model is 
less than 0.16. The RMSEA for the null model was 0.31). 

We also examine the residual correlation matrix to see if there are any specific 
correlations that were not well reproduced by the three factor model. Here is the output: 
 
RESIDUAL MATRIX FOR CORRELATIONS 
 
              V1        V2        V3        V4        V5        V6  
 
PTSD1 (V1)      -      -0.0001   -0.0003    0.0043    0.0029   -0.0050 
PTSD2 (V2)   -0.0001      -       0.0005   -0.0111    0.0050    0.0049 
PTSD3 (V3)   -0.0003    0.0005      -       0.0042   -0.0060    0.0008 
PTSD4 (V4)    0.0043   -0.0111    0.0042      -      -0.0005   -0.0005 
PTSD5 (V5)    0.0029    0.0050   -0.0060   -0.0005      -       0.0009 
PTSD6 (V6)   -0.0050    0.0049    0.0008   -0.0005    0.0009      - 
PTSD7 (V7)   -0.0028    0.0020    0.0011   -0.0217    0.0151    0.0056 
PTSD8 (V8)    0.0096   -0.0018   -0.0078    0.0176   -0.0163   -0.0013 
PTSD9 (V9)   -0.0085   -0.0001    0.0082    0.0057    0.0007   -0.0053  
 
              V7        V8        V9  
 
PTSD1 (V1)   -0.0028    0.0096   -0.0085 
PTSD2 (V2)    0.0020   -0.0018   -0.0001 
PTSD3 (V3)    0.0011   -0.0078    0.0082 
PTSD4 (V4)   -0.0217    0.0176    0.0057 
PTSD5 (V5)    0.0151   -0.0163    0.0007 
PTSD6 (V6)    0.0056   -0.0013   -0.0053 
PTSD7 (V7)      -       0.0000    0.0004 
PTSD8 (V8)    0.0000      -      -0.0004 
PTSD9 (V9)    0.0004   -0.0004      -      
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No single disparity is particularly noteworthy; all of them are quite low.  

Interpretation of the Model 

Here are the (geomin) rotated factor loadings for the model: 
 
ROTATED FACTOR LOADINGS (PATTERN MATRIX) 
 
         F1        F2        F3  
 
PTSD1    0.0163    0.7812   -0.0118 
PTSD2    0.0016    0.7761   -0.0025 
PTSD3   -0.0074    0.7805    0.0281 
PTSD4    0.0149    0.0137    0.7503 
PTSD5    0.0138    0.0064    0.7411 
PTSD6   -0.0137   -0.0061    0.8110 
PTSD7    0.8111   -0.0415   -0.0201 
PTSD8    0.7890    0.0299   -0.0035 
PTSD9    0.7402    0.0227    0.0458 
 
Before interpreting the loadings, we want to gain a sense of their margins of error 
(MOEs). Here is the output that shows the margins of error for the loadings for each 
variable for the first factor: 
 
FACTOR LOADING CONFIDENCE INTERVALS AND MARGINS OF ERROR 
 
FACTOR 1, PTSD1 
 
   Loading: 0.016337 
   95% IJK confidence interval: -.0294 to .0621 
   Lower and upper margin of error: -0.04576, 0.04576 
 
FACTOR 1, PTSD2 
 
   Loading: 0.001633 
   95% IJK confidence interval: -.0488 to .0520 
   Lower and upper margin of error: -0.05040, 0.05040 
 
FACTOR 1, PTSD3 
 
   Loading: -0.007408 
   95% IJK confidence interval: -.0574 to .0426 
   Lower and upper margin of error: -0.05004, 0.05004 
 
FACTOR 1, PTSD4 
 
   Loading: 0.014899 
   95% IJK confidence interval: -.0375 to .0673 
   Lower and upper margin of error: -0.05237, 0.05237 
 
FACTOR 1, PTSD5 
 
   Loading: 0.013832 
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   95% IJK confidence interval: -.0365 to .0642 
   Lower and upper margin of error: -0.05037, 0.05037 
 
FACTOR 1, PTSD6 
 
   Loading: -0.013729 
   95% IJK confidence interval: -.0585 to .0310 
   Lower and upper margin of error: -0.04475, 0.04475 
 
FACTOR 1, PTSD7 
 
   Loading: 0.811091 
   95% IJK confidence interval: .7630 to .8592 
   Lower and upper margin of error: -0.04808, 0.04808 
 
FACTOR 1, PTSD8 
 
   Loading: 0.789041 
   95% IJK confidence interval: .7456 to .8325 
   Lower and upper margin of error: -0.04346, 0.04346 
 
FACTOR 1, PTSD9 
 
   Loading: 0.740182 
   95% IJK confidence interval: .6932 to .7872 
   Lower and upper margin of error: -0.04703, 0.04703    
 
The MOEs are all near 0.05, which is quite reasonable. This also was the case for the two 
other factors as well.  

The strongest loadings for the first factor were for ptsd7 (0.81), ptsd8 (0.79), and 
ptsd9 (0.74). The variables focus on (a) excessive worrying, (b) difficulty concentrating, 
and (c) feeling jumpy and easily startled. The latent factor that contributes to the 
correlations between these variables might be some form of generalized anxiety that 
results from the stressful event(s). The strongest loadings for the second factor were for 
ptsd1 (0.78), ptsd2 (0.78), and ptsd3 (0.78). The variables are (a) upsetting memories 
from the past event, (b) nightmares, and (c) intense reactions to reminders of the event. 
The latent factor that contributes to the correlations between these variables might be 
some form of generalized negative affect associated with reliving the event. The strongest 
loadings for the third factor were for ptsd4 (0.75), ptsd5 (0.74), and ptsd6 (0.81). The 
variables are (a) avoiding activities that might remind one of the event, (b) loss of interest 
in activities and life in general, and (c) feeling emotionally numb. The latent factor that 
contributes to the correlations between these variables might be some form of generalized 
avoidance and numbing. Thus, three general reactions to experiencing stressful war 
events are (1) generalized anxiety, (2) negative affect from reliving the event, and (3) 
generalized avoidance and numbing. These three general reactions manifest themselves 
into the nine specific symptoms, but each symptom also is shaped by unique factors that 
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are unrelated to these three generalized responses. The proportion of unique and common 
variance for each of the nine symptoms are: 
 
VARIABLE COMMUNALITIES AND UNIQUENESS 
 
              Communality    Uniqueness 
 
PTSD1         0.6106         0.3894 
PTSD2         0.6017         0.3983 
PTSD3         0.6223         0.3777 
PTSD4         0.5770         0.4230 
PTSD5         0.5587         0.4413 
PTSD6         0.6483         0.3517 
PTSD7         0.6341         0.3659 
PTSD8         0.6339         0.3661 
PTSD9         0.5790         0.4210 
 
Each symptom has about 40% unique variance and 60% common variance. As noted in 
the primer on factor analysis, the unique variance is substantial and we probably should 
focus theorizing on it as much as on the three generalized reactions that account for 60% 
of the variance in each symptom. 

Finally, we are interested in the correlations between the factors. Here is the 
relevant output: 
 
FACTOR CORRELATIONS 
 
      F1        F2        F3  
 
F1    1.0000    0.2559    0.2830 
F2    0.2559    1.0000    0.3495 
F3    0.2830    0.3495    1.0000  
 
and the relevant margins of errors: 
 
FACTOR CORRELATION CONFIDENCE INTERVALS AND MARGINS OF ERROR 
 
FACTOR 1 WITH FACTOR 2 
 
   Correlation: 0.2559 
   95% IJK confidence interval: .1712 to .3368 
   Lower and upper margin of error: -0.08468, 0.08093 
 
FACTOR 1 WITH FACTOR 3 
 
   Correlation: 0.283 
   95% IJK confidence interval: .1989 to .3630 
   Lower and upper margin of error: -0.08414, 0.07999 
 
FACTOR 2 WITH FACTOR 3 
 
   Correlation: 0.3495 
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   95% IJK confidence interval: .2741 to .4207 
   Lower and upper margin of error: -0.07541, 0.07114  
  
The three generalized reactions to stress are correlated about 0.25 to 0.35, with margins 
of error of about ± 0.08. All of the correlations are statistically significant (p < 0.05) 
because their confidence intervals do not include the value of zero. The confidence 
intervals are based on Fisher r to Z transformations with back-transformations. 

Writing it Up 

Because of space limitations in journals, we do not have room to describe the preliminary 
analyses, but we would indicate in the Method analytic section the general strategies we 
used for preliminary analyses and report that the analyses affirmed the use of maximum 
likelihood factor analysis. We also would explain in that section our strategy of using a 
confidence interval to define margins of error and how the margins of error are 
represented (e.g., “Margins of errors (MOEs) are calculated from 95% confidence 
intervals and are the absolute distance between the lower limit or upper limit of the 
interval minus the parameter estimate, whichever is larger, unless otherwise noted”). 
Here is how we might write-up the results:  
 
“A maximum likelihood factor analysis was performed followed by an oblique geomin 
rotation. The first five eigenvalues and their associated percents of variance accounted for 
were 3.34 (37.1%), 1.75 (19.5%), 1.54 (17.2%), 0.45 (5.0%), and 0.41 (4.6%). Both a 
scree test and a parallel analysis (Zwick and Velicer, 1986) suggest 3 factors should be 
retained. Table 1 presents more formal analyses regarding the number of factors, all of 
which support a 3 factor model. Preacher et al. (2013) recommend using the RMSEA fit 
statistic and its 90% confidence interval to choose the number of factors: Starting with a 
one factor model, one successively increases the number of factors until one identifies the 
first model that has a lower bound confidence interval value less than the traditional close 
fit RMSEA standard of 0.05. As seen in Table 1, this was a model with 3 factors. The 
three factor model also had the lowest HBIC (see Table 1). The root mean square residual 
between predicted and observed correlations was large for the one and two factor models 
(0.19 and 0.13, respectively), but satisfactory for the three factor model (0.007). The four 
factor model improved the disparity index trivially (0.003). A nested CFI statistic was 
computed comparing a given model with a model with one less factor. There was 
substantial improvement in fit for successive models through the three factor model but 
not for the four factor model (see Table 1). Finally, a test of incremental model fit based 
on an RMSEA increment of 0.05 when comparing a given model with a model with one 
less factor (Liu and Bentler, 2011) yielded a statistically significant (p < 0.05) increment 
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in fit for the three factor model but not the for four factor model. All results suggest a 
three factor model is appropriate.  
  The fit of the three factor model was good. The average absolute disparity between 
predicted and observed correlations was 0.007. The RMSEA was < .001 with a 90% 
confidence interval of 0 to 0.037. The comparative fit index (CFI) was 1.00, which 
exceeds the traditional standard of a good fitting model of 0.95 or greater. The chi square 
test for model fit was statistically non-significant (chi square = 9.36, df = 12, p < 0.68), 
which also is consistent with good model fit. There were no specific correlations that 
were not well reproduced by the model.  

The standardized rotated factor loadings and their margins of error (MOEs) are 
presented in Table 2. The MOEs are based on infinitesimal jackknife methods (Zhang et 
al., 2012) and all are near ± 0.05. The strongest loadings for the first factor were the 
variables focused on (a) excessive worrying (0.81), (b) difficulty concentrating (0.79)  
and (c) feeling jumpy and easily startled (0.74). The latent factor that contributes to the 
correlations between these variables might be some form of generalized anxiety that 
results from the stressful event(s). The strongest loadings for the second factor were for 
the variables (a) upsetting memories from the past event (0.78), (b) nightmares (0.78), 
and (c) intense reactions to reminders of the event (0.78). The latent factor that 
contributes to the correlations between these variables might be some form of generalized 
negative affect associated with reliving the event. The strongest loadings for the third 
factor were for (a) avoiding activities that might remind one of the event (0.75), (b) loss 
of interest in activities and life in general (0.74), and (c) feeling emotionally numb (0.81). 
The latent factor that contributes to the correlations between these variables might be 
some form of generalized avoidance and numbing. Thus, three general reactions to 
experiencing stressful war events are (1) generalized anxiety, (2) negative affect from 
reliving the event, and (3) generalized avoidance and numbing. These three general 
reactions manifest themselves into the nine specific symptoms, but each symptom also is 
shaped by unique factors that are unrelated to the generalized responses. The proportion 
of unique variance for each symptom variable is in Table 2. Each symptom has about 
40% unique variance and 60% common variance.  

The estimated factor correlations were 0.26 ± 0.08 between generalized anxiety 
(GA) and generalized negative affect with reliving the event (GNARE), 0.28 ± 0.08 
between GA and generalized avoidance and numbing (GAN), and 0.35 ± 0.08 between 
GNARE and GAN. All three correlations were statistically significant (p < 0.05).”  
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Table 1: Statistics for Determining the Number of Factors 
 

 
Model 

Model 
Chi square 

Model 
RMSEA 

Model 
HBIC 

Corr 
Disparity 

Nested 
CFI 

Nested 
RMSEA 

       
One factor 1367.4* (27) 0.26 (0.25, 0.27) 1188.7 0.191 - - 

Two factors 610.3* (19) 0.20 (0.19, 0.22) 484.6 0.130 0.56 p < 0.05 

Three factors 9.36 (12) 0.00 (0.00, 0.04) -70.1 0.007 1.00 p < 0.05 

Four factors 2.09 (6) 0.00 (0.00, 0.05) -37.6 0.003 0.00 p = 0.99 

 
Notes: * p < 0.05;  Statistically non-significant chi squares are consistent with good model fit (entries in 
parentheses are the model degrees of freedom); RMSEAs less than 0.08 are consistent with good model 
fit (entries in parentheses are 90% confidence intervals). HBIC is the Haughton Bayesian Information 
Criterion (lower values indicate better model fit); Corr disparity is the root mean square disparity between 
predicted and observed correlations; Nested CFI is a comparative fit index comparing the model with a 
model with one less factor; Nested RMSEA is a p value for the test of incremental fit relative to a model 
with one less factor using an increment of 0.05 for the null hypothesis  
 
 
Table 2: Factor Loadings for Three Factor Model 
 

Variable Factor 1 Factor 2 Factor 3 Uniqueness 
     

Upsetting memories 0.02 ± 0.05 0.78 ± 0.04 -0.01 ± 0.04 0.39 

Nightmares 0.00 ± 0.05 0.78 ± 0.04 0.00 ± 0.05 0.40 

Intense reactions to reminders -0.01 ± 0.05 0.78 ± 0.04 0.03 ± 0.05 0.38 

Avoid activities 0.01 ± 0.05 0.01 ± 0.05 0.75 ± 0.05 0.42 

Loss of interest 0.01 ± 0.05 0.01 ± 0.05 0.74 ± 0.05 0.44 

Emotionally numb -0.01 ± 0.04 -0.01 ± 0.04 0.81 ± 0.05 0.35 

Excessive worrying 0.81 ± 0.05 -0.04 ± 0.05 -0.02 ± 0.04 0.37 

Difficulty concentrating 0.79 ± 0.04 0.03 ± 0.05 0.00 ± 0.04 0.37 

Jumpy and easily startled 0.74 ± 0. 05 0.02 ± 0.05 0.05 ± 0.05 0.42 

 
Notes: Margins of error are reported for each loading; Uniqueness is the proportion of unique variance in 
each measure; One minus uniqueness is the communality 

 

 



                                                                                                                               Factor Analysis    15 

 
 

REFERENCES 

Curran, J. M. (2005). An introduction to Bayesian credible intervals for sampling error in 
DNA profiles. Law, Probability and Risk, 4, 115-126. 

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in 
models with small degrees of freedom. Sociological Methods and Research, 44, 486-507. 

Liu, L. & Bentler, P. (2011). Quantified choice of RMSEAs for evaluation and power 
analysis of small differences between structural equation models. Psychological Methods, 
16, 116–126. 

Preacher, K., Zhang, G., Kim, C. & Mels, G. (2013). Choosing the optimal number of 
factors in exploratory factor analysis: A model selection perspective. Multivariate 
Behavioral Research, 48, 28–56. 

Zhang, G., Preacher, K. J., & Jennrich, R. I. (2012). The infinitesimal jackknife with 
exploratory factor analysis. Psychometrika, 77, 634-648. 

Zwick, W.R. & Velicer, W.F. (1986). Comparison of five rules for determining the 
number of components to retain. Psychological Bulletin, 99, 432-442. 


