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Mathematical Models and SEM 
 

Chapter 7 described approaches to causal modeling and Chapter 8 described approaches 
to mathematical modeling. It turns out, the framework of structural equation modeling 
(SEM) that dominates causal modeling data analysis can be viewed as a form of 
mathematical modeling. The current primer explores the relationships between the two 
frameworks. We begin by describing how to represent an influence diagram as a set of 
equations. We then describe parameter estimation using limited information estimation 
instead of full information estimation as a first step to applying traditional mathematical 
modeling to structural equation analysis. Next, we translate the traditional linear 
equations into more general statements of functions that map onto the strategies discussed 
in Chapter 8. Finally, we describe some non-parametric approaches to estimation that 
might be used in future statistical work. We assume you have read Chapters 7, 8 and 11 
and are familiar with the basics of SEM. 

EXPRESSING CAUSAL MODELS MATHEMATICALLY 

The example causal model we use is presented in the influence diagram in Figure 1.1.  

Q

Y

ε1

R

S

T

X

ε3 ε4

ε5

ε2

β1

β2

β3

β4

β5β6

β7

β8

 
 

 FIGURE 1.1. Causal Model 
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The model includes disturbance terms, indicating the equations we derive will be 
stochastic in nature. We use generic labels for the variables for ease of notation. We 
initially assume that all of the relationships are linear, which is a typical assumption in 
SEM applications. However, we relax this assumption later. Each endogenous variable is 
assumed to be a linear function of all variables that have an arrow pointing directly to it. 
The model, thus, can be expressed as a set of linear equations as follows: 

Y = α1 + β1 T + β2 R + β3 S + ε5               [1] 

T = α2 + β4 Q + β5 X + ε4                        [2] 

Q = α3 + β6 X + ε3                                 [3] 

R = α4 + β7 X + ε2                                 [4] 

S = α5 + β8 X + ε1                                         [5] 

where α1 through α5 are adjustable constants representing intercepts, β1 through β8 are 
adjustable constants representing slopes, and ε1 through ε5 are disturbance terms.  

The equations yield a model that is over-identified, although constraints must be 
introduced for estimating the parameters given the presence of disturbance terms (see 
Bollen, 1989).1 The adjustable constants represented by the regression or path 
coefficients in this model reflect the predicted change in the outcome variable given a one 
unit change in the variable associated with the path coefficient, holding other 
determinants of the endogenous variable constant. In practice, data on each of the 
variables would be collected and the model would be fit to the data to determine if the 
model can account for the observed data. The data are used to estimate the values of the 
adjustable constants (intercepts, regression/path coefficients, error variances) so as to 
maximize model fit with the data. If the fit is reasonable, then values of the various 
adjustable constants are subjected to meaningful interpretation. 

FULL INFORMATION ESTIMATION VERSUS LIMITED INFORMATION 
ESTIMATION 

Standard SEM software packages approach model estimation using what is known as a 
full information estimation approach. A set of linear equations is defined for a model (as 
illustrated above) and the parameter estimates for all the equations are derived in one step 
taking into account the full system of equations simultaneously. Maximum likelihood 
criteria typically are used during estimation. An alternative approach is to use what is 
                                                 
1 Specifically, the path coefficients from a disturbance term to its endogenous variable In Figure 1.1 are fixed at 1.0 
so that disturbance variances can be estimated. This is a standard constraint in traditional multiple regression. 
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known as a directed regression or limited information estimation method. In this 
approach, one still works with the equations defined by the model but instead of 
estimating all parameters simultaneously, the parameters for each equation (or a subset of 
the equations) are estimated separately using techniques other than those in SEM 
software (Jaccard et al., 2006).  In essence, we break up the model into parts and then 
estimate each part of the model separately using methods that may be better than 
applying traditional maximum likelihood methods to every equation.  Both full 
information and limited information approaches have strengths and weaknesses.  
Although we can’t delve into a formal comparison of the approaches here, key 
differences include: 
 
1. In limited information estimation, the coefficients in an equation within the model are 
estimated without regard to the parameters in other equations in the model. In full 
information estimation approaches, the coefficients in all equations in the model are 
estimated simultaneously.  

2. Maximum likelihood methods in SEM are based on asymptotic theory. As such, they 
require a sample size large enough to produce sampling distributions that approximate the 
theoretical sampling distributions assumed by asymptotic theory as N approaches 
infinity. The limited information approach does not require asymptotic theory and can be 
appropriate with small sample sizes (though statistical power with small N is an issue in 
both approaches). 

3. Traditional SEM assumes multivariate normality among the variables (except in the 
case of fixed, categorical exogenous variables). Limited information estimation can relax 
these assumptions. Indeed, one can apply robust methods of regression to parameter 
estimation that circumvent the need for standard assumptions of normality and variance 
homogeneity and can protect against outliers in a theoretically informed way as well. 

4. Traditional SEM can adjust for measurement error by using multiple indicators and 
latent variables. Limited information estimation relies on cruder approaches to 
accommodate measurement error. 

5. Limited information estimation can take advantage of robust regression methods 
derived from the literature on robust statistics and methods appropriate for limited 
dependent variables. SEM is evolving similar approaches, but it is not nearly as far along 
as methods in robust statistics. 

6. For correctly specified models, full information estimators are generally more efficient 
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than limited information estimators (in a technical sense of the term). Thus, traditional 
SEM can yield more efficient estimates than limited information estimation as long as the 
model is correctly specified. 

7. Specification error in one part of the model in traditional SEM can reverberate through 
the model and affect other parameter estimates. In limited information estimation, the 
consequences of specification error in one part of the model are limited to that part of the 
model. Thus, specification error is more compartmentalized in limited information 
estimation.  

8. For over-identified models, SEM methods provide indices of model fit separate from 
significance tests of the path coefficients (e.g., CFI RMSEA). In limited information 
estimation, model fit is restricted to tests involving the predicted statistical significance or 
non-significance of path/regression coefficients; there are no global fit indices. 

9. In SEM, complex correlated error structures can be readily accommodated. In limited 
information estimation, strategies for dealing with correlated error are more restricted and 
somewhat more difficult to implement. 

10. As discussed in the main text, directed regression can “mix” analytic strategies, using 
traditional multiple regression in those parts of the model where doing so is appropriate, 
multinomial logistic regression for those parts of the model where doing so is 
appropriate, and so on. Traditional SEM applies the same estimation algorithm to all 
parts of the model.     

MATH MODELING AND SEM WITH LIMITED INFORMATION ESTIMATION 

We can apply the math modeling approaches discussed in Chapter 8 to SEM by using 
limited information estimation strategies. We do not assume linearity. Using stochastic 
models (which include the disturbances within the functions, but which we omit here for 
the sake of pedagogy), we rewrite equations 1 through 5 as 

Y = f (T, R, S)                                       [6] 

T = f (Q, X)                                       [7] 

Q = f (X)                                                [8] 

R = f (X)                                                [9] 

S = f (X)                                                      [10] 
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The task of the math modeler is to creatively apply the strategies in Chapter 8 to isolate 
viable functions for each equation, be they linear or non-linear in character. As well, the 
modeler may need to include functions for correlated errors across equations, which can 
occur in multi-equation models. Note that the function for any given equation can include 
interaction (moderation) dynamics between variables specified by the function, as 
appropriate.  

NON-PARAMETRIC SEM 

Judea Pearl (2012) has been an advocate of what he calls non-parametric SEM. By non-
parametric, he essentially refers to the use of equations 6 to 10. He recognizes that there 
may be scenarios where the types of functions discussed in Chapter 8 may be applicable, 
but he prefers to use frameworks grounded in probability theory coupled with specialized 
notation that traditional probability theory lacks. For a wealth of information about his 
approach, see his web page at http://bayes.cs.ucla.edu/jp_home.html.  Another potential 
useful semi-nonparametric approach is the use of multi-predictor running interval 
smoothers as well as the general additive model on a per function basis (see Wilcox, 
2017).  

CONCLUDING COMMENTS 

Structural equation modeling can be pursued from the framework of math modeling. To 
be sure, there are challenges in doing so which we do not consider here (e.g., modeling 
latent variables), but it certainly has promise. We encourage those of you with such 
interests to pursue this line of work, especially in the spirit of the non-parametric 
modeling framework advocated by Pearl (2012).  
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