
 
 

 

 
 

Methodological Rules 
 

As noted in Chapter 15, Karl Popper espoused the idea of specifying a set of 
methodological rules or scientific standards that researchers should adhere to in order to 
promote rigorous theory tests and to shield such tests from critics who seek to maintain a 
theory in the face of disconfirming data. The idea is to rule out, as much as possible,  
alternative explanations, both theoretical and methodological, for the results so that 
critics cannot question the theory test. Ideally, a negative result should unambiguously 
disconfirm a theory and a positive result should increase confidence in the theory. From 
the standpoint of Bayesian epistemology, this corresponds to designing a study whose 
Bayes factor is diagnostic rather than uninformative (see Chapter 15). In this primer, we 
present a list of 52 methodological and substantive artifacts/difficulties that one should 
seek to address when designing a study to strengthen theory tests. 

The list, by necessity, is incomplete and not all issues will apply to your research. 
Social science is diverse in methodology and focus. Nevertheless, familiarity with all of 
the artifacts will serve you well no matter the type of research you conduct. We discuss 
some issues in more depth than others, based on our judgment of typical knowledge 
levels students have relative to them. Our intent is to provide a “checklist” for you to use 
when designing your research and that you also can use to critique research studies you 
read. Methodologists have evolved solutions or partial solutions for most everything we 
list. We do not consider the solutions because doing so would require a book length 
document. However, we encourage you to explore them in your readings and build a 
strong methodological toolbox to accompany your theoretical toolbox.  

We begin with a discussion of the classic threats to internal validity described by 
Campbell and Stanley (1963), followed by a discussion of issues related to sampling, 
measurement, research design and statistical analysis. There will be overlap between 
some of these issues because methodologists working in different areas often have their 
own unique jargon and ways of thinking about similar phenomena. At the conclusion of 
this document, we provide a full listing of the issues in checklist form.  

CAMPBELL AND STANLEY (1963) THREATS TO INTERNAL VALIDITY 

Campbell and Stanley (1963) posited several factors that can undermine valid inference 
in experiments that involve some type of manipulation or intervention on the part of an 
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investigator. They use what they call a single group pretest-posttest design to illustrate 
most of them, and signify this design as O1 X O2, where the O represents the point in time 
when an observation or measure is taken and X is the administration of an intervention or 
experimental manipulation. Two other types of designs they discuss and that we will 
make reference to are the two group pretest-posttest design, which appears as follows: 
 
Experimental Group:   O1 X O2 
Control Group:    O1     O2 
 
In this design, a control group is added that is not exposed to the intervention. The other 
design is a two group posttest only design: 
 
Experimental Group:   X O 
Control Group:        O 
 
which is the same as the two group pretest-posttest design but omits the baseline 
measures. In true experiments, assignment of people to conditions is random, but 
scenarios occur where this is not the case. We will assume random assignment in our 
discussion below. 

Many of the issues raised by Campbell and Stanley are discussed in the context of 
the single group pretest-posttest design and we will introduce many of the issues in this 
context. We should note that the issues also apply to longitudinal designs with no 
intervention but where the researcher seeks to make statements about the sources of 
changes in a construct over time after measuring the construct on multiple occasions. We 
consider eight issues described by Campbell and Stanley. As a mnemonic, taking the first 
letter of each label we use in the order we consider them spells the acronym THIS MESS. 

Issue 1: Testing Effects 

Testing effects occur when the act of completing a measure changes the construct being 
measured. Suppose in the single group pretest-posttest design, people with depression 
complete an assessment battery asking about depressive symptoms they may have and the 
coping strategies they use to deal with them. By completing the measures, individuals 
may reflect on and think more thoroughly about both the symptoms and coping strategies 
they use and it are these reflections, not the intervention, that cause reductions in 
depression and increased effective coping at the posttest. Note that these testing effects 
are controlled for in the two group pretest-posttest design as long as (1) individuals are 
randomly assigned to condition, and (2) one compares the degree of change for the 
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experimental group with the degree of change for the control group. Testing effects 
should affect both groups equally, so any differences in the posttest distributions can’t be 
attributed to testing effects. Alternatively, with random assignment, one can use the 
posttest-only control group design, which eliminates testing effects altogether. Critics of 
research will be sensitive to whether testing effects can account for your data rather than 
the tested treatment/manipulation.  

Issue 2: History Effects 

History effects refer to events external to the study that may be responsible for changes in 
the outcome of interest rather than the program or intervention per se. For example, in the 
single group pretest-posttest design, the effects of a program to decrease stress among 
patients over a period of 3 months might be overestimated due to events that occur in the 
community or the broader geographic region, such as an improving economy leading to 
more family income that, in turn, reduces stress. Or, an environmental program designed 
to reduce energy consumption might be implemented at the same time that the price of 
energy spikes upward, with the latter being the cause of people using less energy rather 
than the program. History effects can be controlled by using either the randomized two 
group pretest-posttest design or the randomized two group posttest only design because 
such effects should occur in both the experimental and control group; any between group 
differences can’t be due to history effects. Again, critics will be sensitive to whether 
history effects can account for the data rather than the tested treatment/manipulation.  

Issue 3: Instrument Change 

Instrument change occurs when the measuring device used to assess the outcome changes 
over time in ways that suggest program or treatment effects may be larger or smaller than 
is, in fact, the case. In Chapter 14, we discussed the idea of observer drift, in which the 
ways that observers use rating scales or make observations of others can change over 
time as they become more familiar with the judgment task or they become more 
sensitized to certain cues as they gain experience making observations. Such observer 
drift can produce changes in recorded observations from the pretest to the posttest even if 
a program has no effect. Or, perhaps the interpretation of the meaning of items on a self-
report instrument change over time for respondents as respondents become more 
sensitized to constructs addressed in a program. These changes could produce pretest 
versus posttest differences rather than the program. Technically, such effects should 
operate for both the experimental and control groups in randomized two group designs, 
but the occurrence of instrument change is still worrisome because the construct being 
studied might be different than one expects as the measure of it changes. Critics of your 
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research will be sensitive to possible changes in instrumentation as an alternative 
explanation to your data interpretations.  

 Issue 4: Statistical Regression to the Mean 

The dynamics underlying statistical regression to the mean are not well understood by 
many, so we develop it in some depth here. Suppose we select individuals from a 
population with extreme scores in a distribution (e.g., people who score high on a  
depression scale). If we measure their depression again at a later point in time, we often 
will find that their scores will “regress to the mean” of the original distribution, i.e., the 
mean for the extreme group will change over time towards the value of the mean of the 
full group. In clinical psychology, it is often the case that individuals are selected for 
treatment based on extreme scores on a pretest/baseline outcome distribution. At posttest, 
regression to the mean predicts these individuals will exhibit artifactual change that has 
little to do with the treatment program they participate in. There are many sources of such 
regression to the mean but we focus on one of them, measurement error. We will use an 
unrealistic example to make it easier to see the underlying dynamics.  

Suppose we have a group of 9 individuals who, unbeknownst to us, have the same 
true levels of depression (which we will index on a 0 to 100 metric with higher scores 
indicating higher levels of depression). Table 1 presents their observed scores (Y) on a 
depression measure and their true depression scores (T) at Time 1 and Time 2, where we 
have ordered the observed scores from highest to lowest based on their Time 1 values 
(note: in practice, we do not know the true scores, but let’s pretend we do for purposes of 
pedagogy). Each observed score is an additive function of a person’s true score plus some 
random noise reflecting measurement error (see Chapter 13). The random error is 
uncorrelated with the true scores because it is random. Some of the random error pushes 
observed scores upward and some of the error pushes observed scores downward; again, 
its influence is random. Note that the error scores at time 1 are uncorrelated with the error 
scores at time 2, also because the error at both times is random; correlating one set of 
random numbers with another set of random numbers should yield a zero correlation. 

 
Table 1: Regression to the Mean 
 
                                Time 1                         Time 2 
 
   Person    ` Y1    T1     E1            Y2     T2      E2 
 
       1         93    90    +3            93      90    +3 
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       2         93    90    +3            87      90      -3 

       3         93    90    +3            90      90       0 

       4         90    90       0            87      90      -3 

       5         90    90       0            93      90     +3 

       6         90    90       0            90      90      0 

       7         87    90    -3            87      90      -3 

       8         87    90     -3            93      90     +3 

       9         87    90     -3            90      90       0 

Suppose we decide to focus a treatment for depression on individuals who are most 
depressed, so we select the three individuals with the highest observed depression scores. 
Unbeknownst to us, these individuals are no different in their depression levels from any 
of the other individuals and their elevated scores are due solely to random error. The 
mean observed depression score for these three individuals is 93. We expose them to our 
intervention designed to lower depression and then measure their scores at Time 2, after 
the intervention. Suppose the intervention is completely ineffective and the true scores of 
the three individuals remain the same. This is reflected in Table 1. Because random error 
at one point in time is uncorrelated with random error at another point in time, the 
random noise that contaminates the observed scores at Time 2 will take on different 
values than those that contaminated the scores at Time 1. The random errors for the 
highest scoring individuals at Time 1 were all positive in value (each was +3), but at 
Time 2, the random errors are now evenly distributed across the three individuals (one is 
+3, the other is 0, and the third is -3). The mean of the observed scores of the three 
individuals in Table 1 at Time 2 is now 90 and it looks like, at the observed score level, 
that the intervention had some effectiveness because it decreased depression from a mean 
of 93 to a mean of 90 for these individuals. However, the result is an artifact of regression 
to the mean due to measurement error because we biased our selection of participants 
towards individuals with positive random errors at Time 1 (whose errors will not 
necessarily be positive at Time 2).  

Regression to the mean is caused not only by measurement error, but also by any 
variable that disrupts the correlation between variables measured at different points in 
time. Suppose we use a measure that is perfectly reliable and valid, Y, and we measure a 
construct at two points in time using it, Y1 and Y2. Suppose further that the mean and 
variance of Y at both times is the same and that there is a 3 month interval between 
measures. Suppose we select the lowest 10% of the population based on their scores on 
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Y1. Assuming the variable is temporally dynamic, the chances are low that on the second 
testing occasion the exact same individuals will again be the lowest 10% of the sample. 
To be sure, many of the initially selected people will indeed be in the lowest 10%, but not 
all of them because variables unrelated to Y1 (called disturbance variables) will have 
caused some people’s true standing on Y2 to change upward and some people’s true 
standing on Y2 to change downward, essentially mimicking the random influences on Y 
in our prior example. If even just a few of the originally selected people are no longer in 
the lowest 10% because of these random disturbances, the Y2 group mean for the lower 
10% must now be closer to the original population mean (which, for purposes of this 
discussion, is unchanged over time). This same phenomenon operates at the upper end of 
the distribution as well. As such, regression to the mean is caused by the operation of any 
disturbance variable that causes the correlation between Y1 and Y2 to be less than 1.00. 
For elaboration of this point, see Kenny and Campbell (1999).  
  There are two key points to keep in mind about regression to the mean. First, 
regression to the mean is a group phenomenon, not an individual phenomenon. We 
usually have no idea if an individual is going to change upward or downward over time. 
But, as a group, the mean of the most extreme individuals at one or the other end of the 
distribution are likely to move closer to the population mean given the operation of 
random disturbances. Second, regression to the mean operates even if everyone changes 
by a systematic amount due to some intervention or event between Time 1 and Time 2. It 
may be the case that everyone’s true score in the population increases by a constant of 10 
units. Nevertheless, the presence of disturbance variables (such as measurement error) 
will cause the lowest scorers at Time 1 to gain more, on average, than the overall 
population gain of 10 units. See Kenny and Campbell (1999) for substantive examples.  

In studies evaluating interventions, the best way to deal with regression to the mean 
is to randomly assign the individuals you select (e.g., the individuals at the lower end of 
the distribution) to an intervention and control group. Regression to the mean should then 
operate equally in both groups, so group differences in means will reflect the true 
intervention/treatment effect. Evaluating change within a given group (e.g., the treatment 
group) is problematic, however, because it will be subject to regression to the mean if 
people at one end of the distribution were a priori selected to be in the study to the 
exclusion of others. Mee and Chau (1991) present a statistical method for analyses of 
subgroups selected from one (or the other) end of the Y1 distribution to determine if there 
is an additive effect across time (e.g., because of an intervention) beyond what one would 
expect on the basis of regression to the mean for that subgroup.  

Critics can question your conclusions based on results that are subject to regression 
to the mean. You want to be sensitive to its operation and control for it if it is plausible.  
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Issue 5: Maturation 

Campbell and Stanley (1963) refer to maturation as “all biological or psychological 
processes which systematically vary with the passage of time, independent of specific 
external events” (pp.12-13). A single group pretest-posttest design evaluating an 
intervention over a six month period with middle school adolescents, for example, is 
contaminated by pubertal changes that naturally occur during this time period. If pubertal 
changes are relevant to one’s outcome, then the study is flawed. An effective intervention 
designed to improve cognitive functioning in the elderly might appear to be ineffective in 
a single group pretest-posttest design because of naturally occurring, biologically based 
decrements in cognitive function that occur at the same time. Maturation often can be 
controlled by using a two group pretest-posttest design with random assignment to groups 
because the maturation operates in both the experimental and control groups; any 
differences between them cannot be attributed to maturation. Critics of your research will 
be sensitive to possible maturation as a contaminating factor of your conclusions.  

Issue 6: Experimental Mortality  

Campbell and Stanley (1963) discuss experimental mortality in different contexts but 
primarily in terms of problems created by research participants dropping out of a study 
between a baseline assessment and a posttest assessment. In the single group pretest-
posttest design, if dropping out of the study is non-random, then it is possible that biased 
estimates of treatment effects will occur. For example, if early responders to a treatment 
for depression are more apt to remain in the study but non-responders are more apt to 
drop out (because the treatment does not seem to be working), then the estimated effects 
of the treatment will be overly optimistic.  

  Campbell and Stanley also caution about study dropouts for the randomized 
two group pretest-posttest design and the randomized posttest only control group design 
if there is differential drop-out for the experimental and control groups. Again, if the 
differential drop-out is systematic rather than random, then a treatment can appear to be 
more (or less) effective than it actually is. For example, a resource and time demanding 
treatment that is cognitively aversive might lead people who are less motivated to drop 
out of the treatment condition than in the active control condition that is less aversive and 
this, in turn, could bias estimates of treatment effectiveness when comparing treatment 
and control conditions.  We return to this matter below in our discussion of intent to treat 
analyses, but suffice it to say that critics also will be sensitive to the operation of 
treatment dropouts as a contaminating factor in your research.  
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Issue 7: Selection Effects 

Campbell and Stanley discuss selection effects in the context of two group designs 
without randomization. Selection effects refer to self-selection into the treatment or 
control conditions by individuals such that the treatment and control conditions are 
confounded by a host of individual differences now associated with the treatment 
variable. For example, consider an after-school program to increase reading skills in 
students. A researcher compares post-program reading skills for youth who completed the  
program with students not in the program. Without random assignment, it might be the 
case that students who volunteer to be in the program have different pre-program reading 
skills and different motivations to achieve in school than students who do not volunteer to 
be in the program. These pre-existing differences muddy the evaluation of program 
effects because one does not know if group differences after the program are due to the 
program or to pre-existing individual differences between the groups.  

It turns out that selection effects also can undermine randomized designs if the 
selection variables interfere with the process of random assignment or if they exert their 
influence after randomization has occurred. For example, methodologists have suggested 
that researchers or clinic staff sometimes deviate from random assignment protocols to 
ensure a person who is in particular need of treatment is assigned to the intervention as 
opposed to control condition (Rosenberger & Lachin, 2015). Berger (2005) also suggests 
that researchers or clinic staff may occasionally deviate from the random assignment 
protocol so as to enroll patients into the intervention if they think the person is more 
likely to respond to treatment, thus favoring the treatment. Systematic post-randomization 
selection bias can occur due to treatment dropouts, non-adherence to protocols, attrition, 
missing data and unintended between-condition differences in the use of co-occurring 
treatments (e.g., medications to supplement a behavioral therapy trial). Critics will be 
sensitive to problems of interpretation created by possible selection dynamics in your 
research. You want to address them when you plan your study. 

Issue 8: Selection (and Other) Interaction Dynamics 

It is possible for any of the above phenomena to operate in interaction with each other or 
interact with treatment administration to undermine inferences about a treatment. For 
example, an intervention might only be effective if it is preceded by a baseline 
assessment because the baseline assessment sensitizes people to important issues 
addressed in the intervention. Note that this is not the same as a testing effect. The classic 
testing effect refers to the impact of completing an assessment on the outcome per se by 
and of itself. For a testing-by-treatment interaction, the effects of the treatment itself are 



                                                                                                                               Rules    9 

 
 

enhanced by completing the baseline assessment. Stated another way, anything that 
occurs after random assignment and prior to the intervention is, in some ways, part of the 
intervention and contaminating effects of these activities must be considered accordingly.  
 As an example of a selection-maturation interaction, suppose a study of the effect of 
a new teaching approach in elementary school on student math abilities is conducted, 
with students in the control group recruited into the study at the beginning of the school 
year and those in the experimental group recruited into the study at the end of the school 
year. There are selection effects present such that the students in the control group are 
younger than the students in the experimental group and one would expect naturally 
occurring increases in cognitive abilities as a result of maturation over the course of the 
school year.  
 In sum, when conducting research to test the effect of a manipulation, a program, or 
an intervention on outcomes, it is useful to design your study so as to rule out the types of 
threats to valid inference discussed by Campbell and Stanley (1963). Critics of your 
theory tests will use these threats to dismiss your results as uninformative. Your task is to 
design your study so that you can counter each of these threats. Campbell and Stanley 
argue that an effective strategy for addressing many of these problems is to use what is 
called a Solomon four group design, which is used with randomization and has the 
following format:  
 
Group 1:   O1 X O2 

Group 2:   O1     O2 

Group 3:          X O2 

Group 4”     O2 

Note that this is a combination of the two group pretest-posttest design and the single 
group posttest only design described earlier. Comparing O2 for Group 4 with O2 for 
Group 2 diagnoses testing effects. Comparing O2 for Group 3 with O2 for Group 1 
diagnoses testing by treatment interactions. Comparing O2 for Group 2 with O2 for Group 
3 tests for intervention/treatment effects. For more details, see Campbell and Stanley 
(1963) and Reichardt (2019).  

POPULATION/SAMPLING CONSIDERATIONS  

The next set of issues we consider are those related to sampling and the specification of 
populations to which one seeks to make inferences. Campbell and Stanley (1963) make a 
distinction between what they call internal validity and external validity, with the former 
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referring to the supposed truth value of the conclusion within an experimental context 
and the latter referring to the generalizability of that conclusion to other populations, 
contexts, and times. Campbell and Stanley classify “threats” into those that affect internal 
validity and those that affect external validity. Sampling “threats” often are considered 
most relevant to external validity. We discuss five issues relevant to sampling threats, (1) 
biased sampling, (2) specification of inclusion/exclusion criteria, (3) self-selection into a 
study, (4) population homogeneity/heterogeneity, and (5) sampling weights. 

Issue 1: Biased Sampling 

One potentially important sampling issue is whether the sample in your study is 
representative of the population you wish to generalize to. If the sample does not 
represent the target population, then your conclusions about the target population can be 
questioned as being misplaced. An obvious and extreme example would be if you wanted 
to make statements about the elderly but conducted your research on young adults. 
 Sampling issues in social science research are more nuanced than most people 
realize. Population parameters (e.g., means, correlations, group coefficient differences) 
can be estimated with reference to either small, finite populations on the one hand to 
populations that are hypothetical and so large that we do not even know their size. Social 
science research is often conducted with the goal of explaining the behavior of large 
numbers of individuals, often including people who have lived previously or who have 
yet to be born, as well as those residing in the present. For instance, if we are studying the 
course of a particular brain disease, we might think of the relevant population as all 
people, whether currently living or not, who have ever had or will have the illness. In this 
case, the focus is on an extremely large hypothetical population.  

The traditional model for thinking about sampling involves two steps. First, we 
define the population of individuals we want to make statements about. Second, we enact 
procedures that generate a random (or approximately random) sample from that 
population. A key issue in this approach is whether your sample is a reasonable 
approximation of a random sample from the specified population. We refer to this 
approach as the population-first, sample-second approach.1   

Many social scientists, however, turn this logic on its head by conducting a study on 
a group of individuals and then declaring that this group of individuals represents a 
random sample from some unspecified population. The task is to specify the population 
that the sample represents. This essentially frames the issue of sampling in terms of 
generalizability rather than traditional sampling theory: From what population does our 
                                                 
1 Sometimes scientists purposely oversample groups or use forms of stratified or area random sampling instead of 
pure random sampling, but then apply statistical adjustments to correct for such design effects.  
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sample data reflect a random sample? We refer to this approach as the sample-first, 
population-second approach. 

Suppose we want to characterize the attitudes of people in the United States about 
legalizing marijuana. It obviously would be folly for me to conduct a study on college 
students in a large Northeastern university, assess how favorable they feel toward 
legalizing marijuana, and then claim that their measured opinions can be construed as if 
they are a random sample of the general United States population. On the other hand, 
suppose we want to characterize the effect of smoking marijuana on brain physiology and 
We again conduct my study on college students in a large Northeastern university. We 
find that smoking marijuana impacts the behavior of anandamide molecules in the 
hippocampus. we might argue that for these particular variables and for this particular 
relationship, the college students essentially function as a random sample of people in the 
United States and the results can be generalized accordingly. 

Exactly what population sampled individuals are assumed to represent depends, in 
part, on the characteristics of the participants in the study, the context in which the study 
is conducted, and the question that is being addressed. If a learning experiment is 
conducted on 200 college students, the investigator might want to generalize his or her 
results to adults in the United States. In this case, the population would be conceptualized 
as consisting of "all adults in the United States," and the college students are assumed to 
represent a random sample from this population with respect to the variables being 
studied. Obviously this is a questionable assumption. Perhaps the population should be 
conceptualized as "all college students."  Or maybe it should be conceptualized in even 
more specific terms.  

In practice, the approach of inferring a population from a sample is far more 
common in social science research than the approach of first specifying a population and 
then seeking random samples from it. This is especially true of randomized trials where 
volunteers are often recruited from flyers, radio advertisements, posters on public 
transportation, or patients in a particular set of clinics in specific geographic locations. 
Study volunteers are thought to represent a random sample from some population, and 
the question is just who is that population?   

An important point to keep in mind when answering this question is one that many 
researchers do not appreciate, namely that biased samples can yield unbiased population 
estimates. Suppose a population has 50% males and 50% females. A researcher is 
interested in estimating the divorce rate in the population and, unknown to the 
investigator, the true overall divorce rate is 40%. Suppose further that the divorce rate for 
males is 40% and it also is 40% for females. Stated another way, gender is unrelated to 
divorce rates. Now, suppose we conduct a study where our sampling frame, for whatever 
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reason, purposely oversamples males relative to females by a 3 to 1 margin. If one of our 
goals is to estimate the overall population divorce rate, the gender bias in our sample is 
irrelevant; we would get the same basic result if we used a sampling frame that included 
equal numbers of males and females because gender is unrelated to the parameter being 
estimated. The sample bias in gender is moot. Bias only matters for variables that matter, 
not variables that are irrelevant. 

Some argue that when the focus is on basic biological mechanisms or basic mental 
processes, it is not unreasonable to assume one’s sample can be construed as a sample 
from people in general for variables that matter for the particular phenomena under 
study. For a study that addresses how psoriasis is impacted by a new drug, a sample of 
volunteers from a psoriasis clinic in Buffalo, New York, the argument goes, probably can 
be construed as, functionally, a random sample from a large portion of adults in the 
United States. Or can it?  The onus is on the researcher to make a reasonable case for the 
population the sample represents relative to the study variables. Usually this case is made 
in Discussion sections of reports and usually it is framed in terms of generalizability 
rather than random sampling from populations.  

In sum, critics may argue that your study has limited generalizability or that your 
conclusions are misplaced because your sample does not represent the populations you 
are asserting they do. These are criticisms you will want to be able to address.    

Issue 2: Inclusion/Exclusion Criteria 

In general, you should explicitly state if there are exclusion criteria that will be used to 
eliminate people from your study. If there are explicit inclusion criteria, you also should 
state those. Doing so allows critics to judge the appropriateness of your 
sample/population. Critics can raise issues about using unreasonable inclusion or 
exclusion criteria. 

Issue 3: Self-Selection into the Study 

Research in which people can self-select into study participation run the risk of producing 
biased samples. We are not referring here to dropping out of a study after it has 
commenced (per Campbell & Stanley, 1963), but rather to selection bias tied to 
recruitment into the study prior to it starting. With such self-selection, the generalizability 
of results can be compromised. For example, mail surveys can be biased if only certain 
types of people mail in their responses. Phone surveys can be biased if only certain types 
of people agree to take the survey when called. Research that recruits people through 
advertising is subject to self-selection because only certain types of people may respond 
to the ads. Studies suggest that research volunteers often tend to have higher education, 
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higher SES, a greater need for social approval, higher sociability, more sensation seeking, 
more need for conformity, they are more religious, more altruistic, and they are more 
likely to be female, to name a few empirically documented differentiating features.  

In general, it is good scientific practice to collect data on a small set of variables for 
a subset of people who choose not to participate in your study to determine if they differ 
in meaningful ways from those who agree to participate. If non-trivial selection effects 
are evident, then perhaps you should revisit the recruitment protocol you are using.  

In sum, critics might raise selection effects as a means of questioning  
disconfirming data, arguing that the disconfirming results are not generally applicable 
and are distorted by self-selection dynamics.     

Issue 4: Population Homogeneity/Heterogeneity 

Depending on one’s purposes, it possible to choose a population for study that is too 
heterogeneous or too homogenous for purposes of adequate theory tests. When studying 
gender differences in anxiety in adolescents, for example, some researchers use as 
inclusion criteria youth who are between the ages of 10 and 18. However, this is a  
diverse group of youth with quite different life experiences who likely have very different 
sources of anxiety. Youth who are ten years old are typically in the fifth grade in 
elementary school, whereas youth who are 18 years old are typically seniors in high 
school (or they have just graduated from high school). Fifth graders typically have not 
experienced puberty; their brain development and cognitive abilities are much reduced 
relative to high school seniors; they tend not to be involved in dating or romantic 
relationships; they usually are not in the same school with older adolescents who may 
have experimented with alcohol, drugs, and sex; grading is not heavily emphasized in 
elementary school and there usually are no “tracking” programs for bright students; there 
tends to be an emphasis on cooperative learning in elementary schools and the schools 
are smaller; there is a single home-room teacher in elementary schools, with students 
spending all day in the same classroom with the same classmates; and elementary 
students often have relationships that are strong and close with their parents. None of this 
tends to be true for high school seniors. With so much heterogeneity in the population of 
interest, it often is difficult for a theoretical “signal” to emerge from the background 
“noise” of heterogeneity.   

Some research questions require population heterogeneity, such as studies of 
longitudinal dynamics and research on moderating effects as a function of age or some 
other target variable. Also, some researchers are interested in characterizing general 
trends in diverse populations, such as national studies of the United States population. 
However, one also must be careful when mixing diverse populations because of the 
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challenges that doing so can create and because of aggregation bias dynamics, which we 
discuss later.  

On the flip side, one also can study populations that are so homogenous that the 
scope of the research becomes too narrow and of limited interest, per our discussion in 
Chapter 3 of the main text. Researchers need to find an appropriate balance between 
population heterogeneity and scope relative to one’s broader research goals. The bottom 
line is that critics of theory tests might criticize your research as focused on populations 
that are so homogeneous that your results have little generalizability, or they might 
criticize your research as working with populations that are so heterogeneous that there is 
too much “noise” for a viable signal to come through. You want to prepare yourself for 
either criticism as you plan your research.     

Issue 5: Sampling Weights 

In many national surveys, study designers purposely oversample subgroups in order to 
have a large enough sample size in those subgroups to obtain stable parameter estimates. 
Or, study designers might use a sampling strategy where they know certain selection 
biases will be present. For example, many on-line survey firms rely on panels of people 
who agree to be “professional survey takers” for the firms. In exchange for payment, the 
panel members agree to allow the firm to send them solicitations to participate in on-line 
surveys. The panel member can then choose to participate or not in the on-line survey. A 
potential “selection effect” is that such on-line panel members must have access to 
computers, which can bias the sample away from poor people. Survey designers often 
employ weights during data analysis to correct for bias as a result of oversampling, 
selection effects and attrition. Because the use of sampling weights is not well understood 
by many, we delve into the topic here in some depth. In some regards, the use of weights 
during data analysis is a statistical issue because it is in the context of such analyses that 
weights are used. However, we consider it in this section because (a) it bears directly on 
sampling from populations, and (b) the decision to rely on weights to correct for selection 
bias is a design decision.  

The general idea of the weighting process can be illustrated using the formula for a 
sample mean. The traditional formula for the sample mean is the sum of the scores 
divided by the sample size. A more general formula can be written that incorporates 
weights. It is: 

MX  =  Σ wi Xi  /  Σ wi 

where MX is the estimate of the population mean for variable X, w is a weight assigned to 
the score of each individual, i, and the summation occurs across individuals. Each 
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individual’s score on X is multiplied by his or her “weight value” and the sum of these 
weighted scores is divided by the sum of the weights. Suppose we assign everyone a 
weight of 1. The sum of the weights (the denominator) will equal N (the sample size) and 
the sum of the weighted X scores will be the sum of the X scores. The result is the 
traditional sample mean. In this sense, the traditional formula for a sample mean is a 
special case of the above formulation, namely the case where all the weights are 1.0. 

Suppose we are studying a population where we know that 50% of the individuals 
are male and 50% are female. However, we use a sampling frame that oversamples males 
so we end up with 75% males and 25% females. One way to adjust for this bias is to not 
assign a weight of 1 to everyone when we calculate the mean. If we assign smaller 
weights to males and larger weights to females in proportion to the disparity between the 
known population distribution of gender, the weights will correct for the sample bias.  

The construction of such weights can be complicated when there is more than one 
selection effect operating, i.e., when we have to build in corrections for multiple biases. 
Note also that to construct a sampling weight for a selection variable, we need to know 
the true population distribution for that variable. In the above example, we knew that 
50% of the individuals in the population were males and 50% were females. With this 
knowledge and knowing the gender distribution in the sample data, we can construct 
weights that adjust for the disparity. When constructing weights to correct for bias in 
national surveys in the United States, sampling statisticians often use data from the U.S. 
population census as their reference. The problem with this strategy is that the census is 
taken only once every 10 years, so it can be outdated. The census also focuses on only a 
small number of variables, such as gender, ethnicity, and other core demographics. This 
means that sampling weights can only be calculated that take those variables into 
account. Also, some scientists argue that the census data are not all that accurate for some 
of the variables assessed. The bottom line is that the weights one constructs are only as 
good as the accuracy of the assumed population values of the variables that are used in 
the weighting process. 

Suppose we construct sampling weights based on a careful analysis of 10 selection 
variables. Suppose also that the process is successful such that it does indeed correctly 
adjust for the bias that is operating in these variables. This does not mean that bias has 
been corrected on other variables. For example, we once analyzed data collected from an 
on-line panel that adjusted for bias on basic demographic variables for the United States 
population of teenagers (e.g., gender, ethnicity, class, age). The survey was on the sexual 
activity of American youth between the ages of 14 and 17. We knew the results of many 
well-conducted national surveys of this population and we knew the percentage of youth 
in this age range who reported having engaged in sexual intercourse was about 45%. 
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When we calculated the percentage in the on-line panel data using sampling weights, the 
estimated percentage was 25%. The sample was clearly biased on the variable of sexual 
intercourse. The sampling weights corrected for bias in ethnicity, gender, class, and age, 
but it did not correct for the bias in sexual activity. This is a criticism of the reliance on 
sampling weights – you simply can’t anticipate and correct for all the selection effects 
that may be operating. The on-line panel study corrected for some selection variables but 
not others.  

Although the use of sampling weights can correct for bias, doing so comes at a cost, 
namely decreased efficiency (in a strict statistical sense of the term) of estimators. Stated 
another way, statistical estimates based on weights tend to have larger standard errors and 
more sample to sample fluctuation than unweighted data. This lower efficiency is 
undesirable because it lowers statistical power. Making such a tradeoff is especially 
disconcerting if the selection effects do not really produce much bias in estimates in the 
first place, as we discussed earlier.  To address this matter statisticians have developed 
indices of weight informativeness to help guide the decision about whether to use weights 
for a particular modeling situation. Use of these tests involve complex issues that are 
beyond the scope of this primer. See relevant discussions by Asparouhov (2006), 
DuMouchel and Duncan (1983), Feinberg (1989), Kott (1991), Little (1991), Lohr and 
Liu (1994), Winship and Randall (1994), Pfeffermann, (1993) and Pfeffermann and 
Sverchkov (2009). 
 In sum, critics might dismiss a theory test if you fail to use sampling weights that 
are provided by the study designers. Their argument is that your sample is biased and that 
your conclusions are therefore misplaced. However, the use of such weights is not always 
appropriate and you may need to justify your use (or non-use) of them based on weight 
informativeness tests. Indeed, if you do not, some critics may actually criticize you for 
using weights because it reduces the statistical power of your tests, which can undermine 
your conclusions. 

MEASUREMENT CONSIDERATIONS  

Chapters 13 and 14 in the main text described measurement issues to take into account 
when conducting research and designing theory tests, so we do not repeat them here. In 
general, critics can raise issues about the poor mapping of measures onto constructs, the 
unreliability of the measures, the invalidity of the measures, group or facet differences in 
the metric properties of measures, overgeneralizing what the measures represent, and 
issues of instrument change/observer drift, among others. 
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DESIGN CONSIDERATIONS  

In this section. We briefly describe 11 methodological issues, in no particular order, that 
might be applicable to your research design. They are (1) improper control groups, (2) 
non-random assignment, (3) attrition bias, (4) carry-over effects, (5) assessment timing, 
(6) experimenter bias demand characteristics and reactivity, (7) fidelity and manipulation 
checks, (8) contamination, (9) range restriction, (10) task motivation and boredom, and 
(11) ecological validity. 

Issue 1: Improper Control Groups 

When conducting research that requires a control group, critics can raise issues about the 
appropriateness of the control group you choose. In clinical research, for example, 
distinctions are made between active control groups, passive control groups, and 
treatment as usual (TAU) control groups. For example, a study might examine the effects 
of cigarette smokers writing a counter-attitudinal essay about reasons not to smoke on 
subsequent cigarette smoking behavior. Individuals in the treatment condition come to an 
office, sit in a quiet room, and are provided a cover story for why they are to write the 
essay. One month later, participants are contacted by phone to complete a general survey 
on health and one of the questions assesses the frequency of cigarette smoking during the 
past month. Individuals in the control condition are contacted at the time of the phone 
assessment and administered the same survey. Indices of smoking behavior are then 
compared for the two conditions. This is an example of a passive control group.   

Alternatively, individuals in the control condition could come to the office and 
write a counter-attitudinal essay, but they do so on an unrelated topic. They then 
complete the health survey by phone one month later. This is an example of an active 
control group. With an active control group, the tasks are equated as much as possible 
between the treatment and control groups except for the presumed “active ingredients” of 
the treatment program. With a passive control group, no such equating is sought; rather, 
nothing is done on the part of the researcher other than the outcome assessment.  
 As noted, some researchers use TAU as a “control” group. A TAU is an appropriate 
comparator to a new intervention when primary interest is improving the status quo. 
However, some scientists criticize the use of TAUs as control conditions when the goal 
of the study is to test or advance theory. For example, two researchers might evaluate the 
same intervention under generally comparable circumstances but the particular TAU for 
one researcher might be reasonably effective given standard clinic practices in his or her 
community whereas the TAU for the other researcher might be ineffective given standard 
clinic practices in the latter’s community. The two studies might find differential program 
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effects primarily because of quality differences in the TAU conditions despite the fact the 
programs themselves have comparable effects on the outcome.  

Without a careful analysis of what the TAU represents, it can be difficult to know 
what the new program is being compared to, thereby limiting theory development. To be 
sure, we do learn that the new program is better than the status quo and that in itself 
might be useful for scenarios where the type of TAU studied is common. However, to 
build scientific theory, a reliance on the operative TAU in arbitrarily selected clinics can 
be limiting. Some methodologists argue that researchers conducting theory tests should 
instead consider creating an informative control condition in which the treatment and 
control conditions are equivalent in all respects except for the new “active ingredients” in 
the program that one seeks to evaluate. 

In sum, control groups need to be appropriate for the issue being considered and 
critics can question results by questioning such appropriateness. You need to think 
carefully about your control groups and have a solid rationale for the choices you make 
with respect to them. 

Issue 2: Non-Random Assignment 

Random assignment to groups is an experimental ideal, but it is not always possible. 
When we are forced to assign people to different conditions in non-random ways or when 
there is self-selection into a treatment versus control condition, there is always the 
possibility that outcome differences between the groups are due to pre-existing group 
differences of some kind. For example, when studying the health implications of 
smoking, it is not possible to randomly assign people to the groups “smokers” and “non-
smokers.” In such cases, social scientists often use what are called quasi-experimental 
designs to make causal inferences or they use specialized methodological (e.g., matching) 
or statistical methods (e.g., analysis of covariance, propensity analysis) to try to adjust for 
pre-existing group differences. Consideration of these topics is well beyond the scope of 
this primer. For useful resources, see Holmes (2013), Reichardt (2019) and Shadish, 
Cook and Campbell (2001). 

In designs that rely on non-random assignment, critics have recourse to attributing 
group differences to a confound that is associated with group membership rather than the 
manipulation. For example, the cigarette industry maintained for many years that the 
association between smoking and adverse health was attributable to SES differences in 
smoking; lower SES people tend to smoke more and they also have poorer access to 
health care, creating a confounded relationship between smoking and poor health. To 
address critics who object to non-random assignment and who will dismiss your results, 
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accordingly, you may need to use one of the quasi-experimental strategies discussed 
above.    

Parenthetically, sometimes researchers intend to use random assignment but do not 
use proper assignment protocols to operationalize random assignment correctly, which 
also can undermine random assignment. Strict random assignment generally requires the 
use of tables of computer generated random numbers in conjunction with specific 
protocols for executing assignment (see Altaman & Bland, 1999; Cook & Payne, 2002; 
Kalish & Begg, 1985; Suresh, 2011).  

Issue 3: Attrition Bias 

We discussed attrition issues briefly in the context of Campbell and Stanley’s (1963) 
threats to internal validity. Here, we elaborate on the matter. In clinical trials, it is not 
uncommon for researchers to conduct multiple follow-up assessments, such as an 
immediate posttest, a 6 month follow-up, and a 12 month follow-up. People can drop out 
of a trial during treatment such that they do not complete the full treatment protocol or 
they might complete the treatment but then drop-out of the study so that they do not 
provide data at one or more of the post-treatment assessments. We refer to the former as 
treatment dropouts and the latter as assessment drop-outs. Treatment drop-outs are 
particularly problematic because they do not receive a full “dose” of the treatment and 
they can cause one to underestimate the effect of the treatment because the treatment was 
not fully executed. In such cases, truly promising treatments might be dismissed as 
ineffective when, in fact, they would be effective if completed per protocol.  

Dropping out of a treatment can be due to random events or it might be systematic, 
such as due to a failure of the treatment to produce results early on in the treatment. Or, 
people who are less motivated to attend treatment may drop-out of treatment prematurely. 
Critics of studies evaluating treatments are careful to examine treatment drop-out rates 
and to suggest systematic drop-out dynamics that may undermine study conclusions. 
When designing research to evaluate treatment effectiveness, it is important to minimize 
non-random attrition for treatment-dropouts.   

Assessment drop-outs are not necessarily problematic as long as dropping out 
mimics a random process. Having said that, if there are many assessment drop-outs, this 
can reduce statistical power. Systematic drop outs can undermine study conclusions. As 
such, critics also carefully examine assessment drop-out rates and often hypothesize the 
presence of systematic biases that can render study conclusions ambiguous. Several 
effective statistical methods have been developed for adjusting for assessment drop-out 
bias (see Enders, 2010).  
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In the final analysis, you will want to adopt study procedures that minimize  
treatment and assessment drop-outs and that ensure dropping out of either type is not 
systematic in ways that bias study conclusions.          

Issue 4: Carry Over Effects 

Some research designs address treatment versus control comparisons using a within-
subjects design rather than a between-subjects design. For example, suppose an 
investigator is studying the relative effects of two drugs, A and B, on learning among the 
elderly. Fifty people are administered Drug A and then work on a learning task. One 
month later, the same fifty people are administered Drug B and work on the same type of 
learning task. Performance is then compared as a function of the two conditions. In such 
designs, there is the potential for carry-over effects from one condition to the other, 
thereby contaminating the results. For example, the researcher needs to be certain the 
effects of Drug A have completely dissipated before testing Drug B. Other forms of 
carry-over effects are more subtle. For example, taking the learning test during the first 
session may sensitize individuals as to how to perform better on the test on the second 
occasion. For within-subject designs, critics can raise issues of carry-over effects, broadly 
defined. You will want to design your study so that carry over effects do not undermine 
study conclusions.            

Issue 5: Assessment Timing 

As noted in Chapter 7 of the main text, the choice of the time interval between 
assessments or between a treatment and a posttest can be critical for theory tests. To take 
an obvious example, if one seeks to examine the effect of aspirin on headaches, it does 
not make sense to measure headache severity 20 seconds after an aspirin has been taken; 
it takes time for the aspirin to work. Similarly, it would not make sense to evaluate the 
effect of aspirin on headache severity one month after a person has taken the aspirin. 
Choice of time intervals matters. A treatment to improve parenting may show little effect 
on child outcomes unless parents are given sufficient time to change their behavior and 
those behavioral changes can filter through to the child outcomes. Critics can complain 
that the time interval used in a study is either too short or too long to adequately reveal 
the relevant causal dynamics. You need to justify your choice of time intervals.       

In causal thinking, a cause is assumed to precede an effect in time. This means that 
causes, ideally, should be measured prior in time to effects. Sometimes, the amount of 
time it takes for a cause to produce an effect is extremely short, virtually instantaneous. 
In such cases, assessment of the cause and effect likely can take place during the same 
assessment session. Alternatively, because of pragmatics (e.g., cost), a researcher may 
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have no choice but to measure a cause and an effect during the same assessment occasion 
even when there is a non-trivial time interval between cause and effect. When this occurs, 
critics can raise objections related to timing. For example, some critics assume the causal 
dynamics have already played themselves out but the direction of causality is the reverse 
of what was hypothesized, namely perhaps the purported “cause” is really the “effect” 
and the purported “effect” is really the “cause.” You need to be prepared to deal with 
critics who raise issues of inappropriate timing of assessments.   

Issue 6: Experimenter Bias, Demand Characteristics and Reactivity  

Experimenter bias refers to a process whereby scientists or research assistants 
unknowingly or unwittingly engage in behaviors that bias results of a theory test in a 
favored direction. In a classic example by Rosenthal and Forde (1963), graduate students 
were asked to train rats to learn a maze. One group of students were told the rats were 
“maze bright” (that the rats had been in-bred through selective breeding to be good at 
running mazes) while the other half of the students were told the rats were “maze dull” 
(the rats were in-bred to be poor at running mazes). In fact, all the rats in the study were 
regular laboratory rats. Results showed that the maze bright rats learned to run the maze 
faster than maze dull rats. Rosenthal and Forde found that the students conducting the 
experiment handled the maze bright and maze dull rats differently when they placed the 
rats into the mazes. People engaging in data collection can sometimes bias responses in 
desired directions and critics will inevitably raise this issue unless procedures are put in 
place to prevent it (e.g., using data collectors who are unaware of the theories and 
hypotheses being tested). 
  Demand characteristics refer to cues provided by researchers or the research setting 
that communicate the purpose of the study to respondents. Once learning the purpose of a 
study, participants will often act in ways to support the researcher’s theory in order to try 
to please the experimenter. Researchers need to avoid conveying demand characteristics 
to study participants. Common strategies for dealing with demand characteristics include 
emphasizing in orienting instructions the importance of participants acting naturally and 
being truthful in all aspects of the study. Another strategy is to provide participants with 
an effective cover story that masks the true purpose of the study.  

Reactivity refers to changes in study participants' behavior simply because they are 
aware they are being studied. Reactivity can foster either greater compliance or greater 
non-compliance in participants and it can reduce study validity and generalizability, 
accordingly. When people know they are being observed for purposes of a scientific 
study, the fact is their behavior can change. Critics can raise this issue. Researchers need 
to devise strategies to reduce or eliminate reactivity.  
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Issue 7: Fidelity and Manipulation Checks 

When we implement a program in an applied setting for purposes of testing its 
effectiveness, it is important that the program be implemented faithfully. If key elements 
of the program are changed by program staff, unbeknownst to the researcher, or the 
program is only partially implemented, the estimate of treatment effectiveness can be 
undermined. The same is true for any type of manipulation in a laboratory or 
experimental study; if the manipulation is weak and does not accomplish what it is 
intended to accomplish, then a theory test can be undermined. Researchers routinely 
include in their studies fidelity and manipulation checks to counter critic arguments of 
program infidelity or weak manipulations. In some studies, researchers inadvertently 
manipulate other factors in addition to those intended, thereby creating confounds. One 
also wants to address this possibility when designing research, as critics may also raise 
issues related to manipulation confounds.  

Issue 8: Contamination 

In designs that use a treatment and a control group, it is possible for some individuals in 
the control group to inadvertently be exposed to portions of the treatment. Sometimes 
people in the treatment condition will talk with people in the control condition during the 
course of the study and tell them about their treatment experiences. Sometimes people in 
the treatment condition will share materials they received with people in the control 
condition. Sometimes individuals in the control condition will “cross-over” and fully 
participate in the treatment condition, unbeknownst to the researcher. Critics will want 
assurances that contamination has not occurred and if it has, that corrections for it have 
been made.  

Issue 9: Range Restriction 

When we examine correlations between variables, the magnitude of the correlations can 
be impacted by a phenomenon known as range restriction. Restriction of range occurs 
when the sample data are not available across the entire range of scores of interest for the 
variables being correlated. In such cases, the observed correlation in the range restricted 
data will be lower than if data from the entire range had been available and analyzed. 

Range restriction results in a systematic underestimation of a correlation. A 
common scenario where range restriction occurs is when we seek to estimate the 
population correlation between a selection method, such as test performance on a pre-
college ability test, and a criterion, such as success in college, but we only have data on 
college success for people who were admitted to and attend college (see Dahlke, Sackett 
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& Kuncel, 2019, for substantive examples and further elaboration). Range restriction also 
can affect conclusions from literature reviews that use meta-analyses that rely on 
standardized effect sizes. There are ways of statistically correcting for its effects in meta-
analyses (see Dahlke et al., 2019).  

In sum, if your research focuses on correlations or other standardized coefficients 
for purposes of theory tests, critics may raise the issue of range restriction relative to 
study conclusions.   

Issue 10: Task Motivation and Boredom 

As discussed in Chapters 13 and 14, individuals can become bored in experiments or 
when completing interviews; or, their motivation to take the tasks seriously may be low. 
As a result, they may not respond conscientiously, which can introduce random error into 
the study. For complex experiments or studies, critics may question results by 
questioning respondent motivation. 

 Issue 11: Ecological Validity 

The ecological validity of a study refers to the extent to which the methods and setting of 
the study approximate real-world settings and thereby activate real-world processes. 
Ecological validity is sometimes equated with a construct known as mundane realism, 
which refers to the extent to which an experimental situation is similar to situations 
people encounter outside of the laboratory. For example, when studying mock juror 
decision making in a laboratory setting, researchers seek to make the laboratory setting as 
similar to real life court contexts as possible, including having juror boxes where a small 
group of “jurors” sit, a “judge” and a prosecuting and defense “attorney.” Not all research 
requires ecological validity, such as research on basic biological or psychological 
processes, but there are research domains where it is important and where critics will 
raise questions about the sterility or unrepresentativeness of the study context.  

DATA MANAGEMENT AND STATISTICAL CONSIDERATIONS  

In this discussion, we discuss 16 data analytic issues that critics can raise with respect to 
a study and that you will want to address, The issues are (1) data management, (2) sample 
size, (3) outliers, (4) assumption violations, (5) clustering, (6) missing data, (7) intent to 
treat versus per protocol versus CACE analysis, (8) matters of metric, (9) endogeneity, 
(10) aggregation bias, (11) misspecified functional forms, (12) selective reporting and p 
hacking, (13) reporting of effect size, (14) reporting of indices of sampling error, (15) 
familywise error, and (16) accepting the null hypothesis 
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Issue 1: Data Management  

Data management involves, among other things, ensuring data are recorded accurately 
and integrated accurately for purposes of data analysis. It goes without saying that this 
matter is fundamental to making accurate inferences from research data. You will want to 
use good data management protocols. 

Issue 2: Sample Size  

When planning a study, one must make decisions about the sample size. Most social 
scientists think about sample size largely in terms of statistical power, but such decisions 
should encompass more than just power considerations. Statistical power refers to your 
ability not to miss important effects by falsely declaring a test of those effects as 
statistically non-significant. If you declare a result as being statistically non-significant, 
critics will want assurances that your study is adequately powered. Statistical power 
varies by statistical method, so when conducting a power analysis to help determine 
sample size, you will want to focus on the most sample-size demanding statistical 
analysis you intend to conduct.  

Sample sizes impact sampling error and, in turn, the width of confidence intervals 
about your parameter estimates. We suggest that you think about confidence intervals in 
terms of the concept of margins of error. All of us have encountered the concept of 
margins of error in everyday life in opinion polls. Reputable national polls often report a 
percentage accompanied by a margin of error (MOE), such as “the percent of people 
favoring Policy X is 65%, with a margin of error of plus or minus 5%.”  The margin of 
error is useful because it gives us a sense of how much confidence we can have in the 
reported estimate. If for the above poll, the margin of error was plus or minus 30%, then 
we would not give the estimate yielded by the poll much credibility. By contrast, if the 
MOE is only 1%, we have more confidence in drawing conclusions from the reported 
percentage.  

Margins of error are defined by statisticians as an index that conveys a sense of the 
amount of sampling error that is operating. It is often operationalized in terms of a 
confidence interval. A common strategy is to determine the absolute distance between the 
sample estimate and both the upper and lower limit of the 95% confidence interval. The 
MOE is the larger of these two absolute values. If the mean difference in a sample of the 
annual salary for male and female professors is $5,000 with a 95% CI of $3,000 to 
$7,000, the lower limit difference is 

 
$3,000 – $5,000 = -$2,000 
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and the upper limit difference is 
 

$7,000 - $5,000 = $2,000 
 

The absolute value of both of these is 2,000, so the margin of error is plus or minus 
$2,000. Based on this, one would report the average salary disparity between males and 
females as $5,000 (±$2,000).  
 MOEs can be calculated for most any parameter type. The size of the margin of 
error one will obtain in a study is impacted, in part, by sample size. Just as one can 
conduct a priori power analyses to help make sample size decisions, there exist statistical 
methods that allow one to specify the margins of error one likely will obtain in a study 
based on a given sample size (Jaccard, 2018; Maxwell, Kelley & Rausch, 2008). We 
recommend you also make use of these methods when making sample size decisions so 
as to ensure your MOEs will not be unacceptably large and subject to criticism. 
 Another consideration when making sample size decisions is whether the statistical 
methods you will use rely on asymptotic statistical theory. Asymptotic theory, stated 
simply, refers to scenarios where the sampling distribution of a parameter behaves in 
mathematically tractable ways only when sample sizes are large. A mathematically 
tractable sampling distribution is important because we often rely on such distributions to 
derive p values for significance tests and to calculate confidence intervals. A key question 
when using statistical methods that rely on asymptotic theory is at what sample size is 
asymptotic theory compromised. You need to be able to justify your sample size in this 
context if critics raise the issue.  

A final factor we mention that often needs to be considered when making sample 
size decisions is the stability of the covariance matrix being analyzed if you plan on 
conducting multivariate analyses (such as multiple regression, analysis of covariance, or 
structural equation modeling). The concept of sample covariance matrix stability is 
complex, but it has to do with how well the sample covariance matrix represents the 
population covariance matrix and the extent to which deviations based on sampling error 
can lead the analyst astray during the model evaluation process. In simple terms, a 
reasonably stable sample covariance matrix is one that preserves the rank ordering of 
correlations in the population among all possible pairs of variables and where the 
variances and covariances in the sample matrix are not too discrepant from the 
corresponding population variances and covariances. Covariance matrix instability is 
usually the motivating force behind the many (and often highly discrepant) rules of 
thumb that one encounters about the “number of subjects per variable” needed for 
effective analysis. Most simulation studies find that these rules of thumb have little 
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validity (Wolf, Harrington, Clark & Miller, 2013). The only sure way to gain 
perspectives on the matter is to conduct a Monte Carlo simulation relative to the 
statistical procedures you intend to use (Muthén & Muthén, 2002).  

In sum, when making sample size decisions, you should take into account statistical 
power, confidence interval width, asymptotic theory, and covariance stability. Critics can 
dismiss study results if your sample size is too small relative to these facets of analysis.         

Issue 3: Outliers 

Outliers are aberrant cases whose inclusion in data analysis can distort characterizations 
of fundamental data trends. It is important that analysts check for outliers and, if present, 
deal with them. In multiple regression analyses, distinctions are made between outliers 
and leverage. Outliers refer to how far a predicted Y value for an individual is from the 
fitted regression line. Leverage refers to how unusual a person’s multivariate predictor 
profile is. The impact of a case on regression coefficients is a multiplicative function of 
that case’s residual and leverage. Most of the commonly used methods for analyzing 
outliers and leverage are problematic because the methods are impacted by the very 
outliers they are intended to identify. More modern and effective outlier/leverage 
identification methods are discussed in Wilcox (2017). Critics can question the validity of 
results that ignored the possibility of outliers/leverage during data analysis.  

Issue 4: Assumption Violations 

When we apply traditional statistical methods, we often make assumptions about how 
data are structured in the population. The most common assumptions concern 
independence of observations, normality, and homogeneous variances. These 
assumptions are frequently violated. For example, Micceri (1989) examined distributions 
of 440 large-sample secondary data bases containing a wide range of achievement and 
psychological measures. In every case, departures from normality were evident. It is 
commonly believed that many of the most frequently used statistical methods are robust 
to assumption violations, i.e., that they perform well even if their assumptions are 
violated. This is not necessarily the case. A set of more modern statistical methods have 
become available that provide such robustness in many contexts (see Wilcox, 2017). If 
your data violate assumptions of traditional methods, you should consider analytic 
alternatives to avoid critics questioning your conclusions relative to assumption 
violations.  
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Issue 5: Clustering 

Related to the above issue is the problem of clustering. Some surveys and research 
designs randomly select clusters of individuals rather than individuals per se even though 
data analysis is conducted at the level of individuals. For example, we might randomly 
sample classes within a school and include every student in each class in our sample. In 
this case, each class is viewed as a “cluster.”  Or we might administer a therapy to each of 
50 small groups of individuals, with each group consisting of 5 members. Our control 
group might have 50 groups of 5 individuals each, with the groups engaging in an 
unrelated group activity. This is a randomized cluster design where the groups are 
conceptualized as clusters. 

When we analyze such data at the individual level (ignoring groups), a standard 
assumption we make is that the error/residual scores in the model are independent. 
However, in clustered designs, this may not be the case. For example, if a group of 
individuals contains a particularly disruptive group member, then the outcome scores for 
all members of that group might be affected, but not members of other groups, since they 
are not exposed to that disruptive member. Or, a group might have a particularly good 
group therapist/teacher/leader and all of the members of that group benefit accordingly. 
The presence of such cluster effects can create dependency structures among the model 
residuals. If the dependencies are strong enough, then adjustments need to be made in the 
statistical tests to accommodate them; otherwise, our p values and confidence interval are 
incorrect. Critics can raise objections to results derived from analyses that ignore 
clustering in a design where clustering is present.  

Issue 6: Missing Data 

Missing data are common in some types of research. How one treats missing data can 
affect the conclusions one makes. The traditional approaches to missing data of listwise 
and pairwise deletion have been found to be unsatisfactory unless missing data is 
relatively infrequent. More modern methods of treating missing data include multiple 
imputation and full information maximum likelihood (FIML), among others. Critics can 
raise objections to studies that use outdated or inappropriate methods for dealing with 
missing data. For an introduction to the more modern methods, see Enders (2010).  

Issue 7: Intent to Treat vs. Per Protocol vs. CACE Analysis 

For clinical trials with treatment drop-outs, an important issue surrounds the analytic 
strategy one uses to deal with the drop-outs. Some analysts argue for an analytic strategy 
called intent-to-treat (ITT) analysis. In ITT frameworks, the data from all individuals who 
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are randomized are analyzed regardless of whether they followed the treatment protocols. 
Posttest and follow-up data are collected even from treatment dropouts and these data are 
included in treatment evaluation. The logic is that in real world applications, people drop 
out of treatments, often because the treatment is too demanding or because of too many 
obstacles to treatment completion. If the goal is to document the likely effectiveness of 
the treatment in the real world, then we should allow such factors to operate because they 
are part of the real-world process.  

By contrast, other researchers argue that it makes no sense to evaluate the efficacy 
of a treatment unless the treatment is fully implemented per protocol. If one wants to 
know the effect of a drug on an outcome, for example, what sense does it make to include 
people in the experimental group who have not taken the drug or have taken it 
haphazardly? These analysts argue for excluding treatment drop-outs from analysis and 
only analyzing data for people who have completed the treatment per protocol. Such 
analyses, of course, must deal with the possible undermining of randomization as a result 
of drop-outs. 

When ITT and per protocol frameworks were first differentiated, the general idea 
was that per protocol analyses would be appropriate in early stage clinical trials when the 
focus is on establishing the efficacy of a treatment. Once treatment efficacy is 
established, it is then appropriate to evaluate treatment effectiveness via ITT analyses in 
later stage clinical trials, as the treatment moves closer to real world implementation. The 
term efficacy typically is associated with the spirit of per protocol analyses whereas the 
term effectiveness is associated with the spirit of ITT analyses. 

Unfortunately (in our view), many researchers insist on ITT analyses even in early 
stage clinical trials and state that it is the gold standard that all clinical trials should be 
held to. To us, ITT and per protocol analyses address different questions. An efficacy 
trial focuses on a specific question, namely whether a treatment, properly executed, can 
affect the outcome and by how much.  An effectiveness trial, by contrast, confounds two 
questions, (1) is a treatment efficacious and by how much, and (2) will people adhere to 
treatment protocols and by how much. The factors that impact treatment effectiveness are 
not necessarily the same as those that impact treatment efficacy. To us, both types of 
trials and both forms of analyses are meaningful.  

Ironically, many trials that adopt ITT analyses use methodological procedures that 
are unrealistic in real world settings and that undermine the spirit of an effectiveness trial. 
For example, participants are paid to be in the study, the researchers exert extra efforts to 
retain patients in the trial (e.g., multiple phone calls, text messages), and the staff are 
monitored for implementation fidelity and intervened with if fidelity is suboptimal. These 
practices tend not to occur in real world settings. If one is truly interested in treatment 
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effectiveness in real world settings, then one should do a good job of capturing the 
dynamics of those settings in the context of ITT frameworks.  

We also believe an exclusive focus on ITT raises ethical issues. Suppose treatment 
A is more efficacious than treatment B in per protocol analyses but the two treatments are 
equally effective in ITT analyses. If only ITT analyses are performed, then when 
presenting treatment options to future patients, the patients would be told that the two 
treatments are about equally effective. With the per protocol information in place as well, 
future patients might be told “Treatment A is much more efficacious than treatment B, 
but people have trouble staying with it. If you can manage to do so, your chances of 
successful recovery are much greater.” Withholding such information from patients, in 
our view, is ethically questionable.  

The choice of ITT versus per protocol analyses for treatment dropouts is complex 
(see Feinman, 2009). We believe both forms of analyses are informative. Recently a third 
type of analyses has been suggested, called complier average causal effect (CACE) 
analysis. CACE analyses seek to compare outcomes for individuals who completed 
treatment with the outcomes of control group individuals who would have completed 
treatment had they been offered it, i.e., the comparison is for individuals who are 
comparably motivated. Those advocating for CACE analyses have developed clever 
ways of conducting such comparisons (see Jo, 2002 and Peugh et al., 2017).  

If you conduct a clinical trial, critics might criticize you for conducting per protocol 
analyses, they might criticize you for conducting ITT analyses, and/or they might 
criticize you for not conducting CACE analyses. You need to think through your choices 
carefully and be prepared to justify them.  There is nothing wrong with pursuing all three 
forms of analysis if you feel each will provide useful information for your purposes.       

Issue 8: Matters of Metric  

Outcome measures can be nominal, ordinal, interval, or ratio in character. The type of 
analytic method one applies to the measures might differ depending on these metric 
properties. If a metric is considerably non-interval, then a critic can question your 
conclusions if you applied an analysis in which accurate inference requires interval level 
data. Note that ordinality of a measure is a matter of degree, with some measures being 
only slightly ordinal and others being decidedly ordinal. You can often apply analytic 
methods that presume intervalness to ordinal data as long as the approximation to 
intervalness is reasonable. Indeed, doing so is often preferable because some ordinal 
forms of analysis are sample size demanding and make assumptions in their own right 
that may be unreasonable and that get you into even more trouble than presuming the 
data are interval in character (Jaccard & Turrisi, 2003). You will want to think carefully 
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about the type of analysis you apply based on the metric of the variables you are 
analyzing. Critics may raise metric issues in this regard. 

Issue 9: Endogeneity 

Endogeneity usually is discussed in two contexts, (1) omitted variable bias, and (2) 
assuming one way causation when, in fact, reciprocal causation exists. It focuses on the 
case where one seeks to make a causal inference from correlational data. We first 
consider the case of omitted variable bias. 

Omitted variable bias is also called left out variable error (LOVE). Left out variable 
error occurs when one leaves out of the causal equation one or more variables that 
directly affect the outcome over and above the predictors in the equation and those 
external variables are non-trivially correlated with the predictors. If a key determinant of 
Y that is correlated with X is omitted, then one commits LOVE and the fitted model is 
misspecified and subject to bias. As an example, suppose the true data generating process 
in the population is 

Y = α  + β1 X1 +  β2 X2 +  β3 X3 + ε 

but we estimate  

Y = α  + β1 X1 +  β2 X2  + ε 

The omission of X3 can create bias in our estimates of the causal impact of X1 and X2 on 
Y. LOVE also can bias significance tests and confidence intervals.  

Omitting a key determinant of the outcome over and above the predictors in an 
equation is not always problematic. For example, if the omitted variable (OV) is 
relatively uncorrelated with the predictors in the model, omitting the variable will not 
bias estimation, although it can reduce statistical power. If the omitted variable’s impact 
on Y is completely mediated by the predictors already in the equation (i.e., OV is a distal 
determinant of Y through the X), then leaving out the variable also is of little 
consequence. Omitted variables are most likely to introduce problems if (a) the omitted 
variable is moderately to highly correlated with the predictors and (b) the omitted 
variable has a non-trivial, independent impact on Y.  

In most social science research that seeks to make causal inferences from 
regression/correlational analyses, LOVE is inevitable. The question is not so much 
whether LOVE exists (because it almost always does), but rather whether it is of a 
sufficient size and nature that it will mislead us when making conclusions. Whenever you 
conduct a multiple regression or SEM analysis with causal inference in mind, you should 
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think about LOVE. You should consider measuring and including as covariates variables 
that are theoretically meaningful and that could create bias if omitted. For an in depth 
discussion of LOVE, see Mauro (1990) and Clarke (2009).  

For reverse causality, endogeneity raises issues in another form. As noted in 
Chapter 7, a bidirectional causal relationship is when a variable, X, has a causal influence 
on another variable, Y, and Y, in turn, has a “simultaneous” impact on X. If we use the 
association/correlation between X and Y to infer the magnitude of the causal link 
between X and Y (as is often the case in SEM or multiple regression analyses), this can 
be problematic when reciprocal causality is present because that association is inflated or 
affected by the effect of Y on X in addition to the effect of X on Y. By ignoring this fact, 
our estimate of the causal impact of X on Y can be biased. Such over-estimation can be 
addressed through the use of instrumental regression (Bollen (2012). 

In sum, you will hear reference to the problem of endogeneity. When endogeneity is 
invoked, a critic is usually raising the issue of omitted variable bias or reverse causality 
(sometimes it also is invoked for the biasing effects of measurement error). When you 
design studies, you need to think about endogeneity and develop strategies to counteract 
its biasing effects.   

Issue 10: Aggregation Bias  

Aggregation bias refers to distortions in conclusions that occur from the act of 
aggregating data. Aggregation bias takes many forms. One form is that of Simpson’s 
paradox, which we discussed in Box 6.1 in Chapter 6. Closely related to this dynamic is 
the failure to include operative interactions/moderators in a statistical model that lead one 
to make misleading generalizations. For example, suppose that a treatment for depression 
only works for females but not for males. If an analyst ignores gender in the analysis, s/he 
might conclude that the treatment is relatively effective for both genders when this is not 
the case. Important and consequential subgroup dynamics are obscured. Critics can 
potentially criticize you for making such specification error, namely the omission of 
important subgroup analyses that lead to faulty generalizations and inappropriate 
inferences.     

Another form of aggregation bias is when one inappropriately infers mechanisms 
are operating at the individual level based on group level data and analyses. As one 
example, researchers may assume that differences in population averages directly apply 
to individual cases, which is not necessarily the case. For example, mean math 
achievement scores may be higher for males than for females. This does not imply, 
however, that all males have higher math achievement than all females at the individual 
level. A randomly selected male may or may not have higher math achievement than a 
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randomly selected female even in the face of such mean differences. As another example, 
if we calculate the average wealth of each state in the United States and correlate that 
index with the tendency to vote Democratic, there is a positive correlation. For example, 
in 2004, the Republican candidate, George W. Bush, won the fifteen poorest states while 
John Kerry, the Democratic candidate, won 9 of the 11 wealthiest states. However, at the 
individual level, research has shown time and again that wealth is negatively correlated 
with the tendency to vote Democratic. The level of analysis matters!  

Another form of aggregation bias is known as dimensional aggregation. Suppose a 
measure of depression has four subscales measuring different facets of depression, (1) 
affect, (2) negative cognitions, (3) somaticism, and (4) apathy. Suppose that only the 
apathy dimension is correlated with the engagement in healthy exercise behaviors by the 
elderly. If a researcher only works with an aggregate index of depression that sums across 
the four subscales, one might conclude that depression in general is related to exercise, 
missing the fact that it is only apathy that truly matters. One might falsely conclude in 
such scenarios that treatment of any of the dimensions of depression will improve 
exercise behaviors in the elderly, when this is not the case; only treating apathy will be 
effective. Or, by adding all of the unpredictability or “noise” of affect, negative 
cognitions, and somaticism to the predictability or “signal” of apathy, one may find a 
non-significant correlation between depression and exercise and falsely conclude that 
none of the dimensions matter. 

In sum, critics can question your conclusions or theory tests if you use an analytic 
method that aggregates across data in ways that can mischaracterize the operative causal 
dynamics. You need to choose the level of analysis carefully and not generalize beyond 
that level of analysis to other levels of analysis.  

Issue 11: Misspecified Functional Forms  

When social scientists use correlation or regression based analyses, it is common for 
them to assume linear relationships between variables. However, the functional form 
between quantitative variables might be non-linear and treating it as if it is linear might 
yield faulty and consequential inferences. In Chapter 8 on mathematical modeling, we 
described a large number of different functional forms that could be operative. Chapter 
11 introduced the use of smoothers to explore non-linear functions (see also the 
supplemental materials for Chapter 11 on our website). Critics can question your 
conclusions if they suspect you have use a misspecified functional form between 
variables.   
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Issue 12: Selective Reporting and p Hacking  

In Chapter 15, we discussed the problem of p hacking and selective reporting of the 
results of statistical tests. Critics can question your conclusions if you engage in such 
practices.  

Issue 13: Reporting of Effect Size  

Traditional null hypothesis testing addresses the question of whether an association 
between variables exists. However, the approach has little to say about the magnitude of 
the association. It is becoming more common to report, in addition to p values associated 
with significance tests, effect size indices that capture the magnitude of an effect. Over 
sixty different indices of effect size have been suggested in the research literature and 
there is no consensus about which one is preferable. Most (but not all) of the measures 
can be classified into two classes, (1) unstandardized indices of effect size and (2) 
standardized indices of effect size. Unstandardized effect size indices are expressed in the 
raw metric of the outcome measure, such as the actual mean difference between two 
groups or an unstandardized regression coefficient. Standardized effect size indices are 
expressed in a transformed metric that is thought to have intuitive and interpretational 
appeal. The most commonly reported standardized effect size indices for ANOVA 
designs are Cohen’s d and indices that reflect the percent of variance accounted for (e.g., 
omega squared, eta squared, epsilon squared). In traditional regression analysis, common 
standardized effect size indices are the squared multiple correlation, standardized 
regression coefficients, and correlation coefficients. Unstandardized indices include 
unstandardized regression coefficients and standard errors of estimate.  

Both standardized and unstandardized indices of effect size have strengths and 
weaknesses. Given this, we like to report both types. Critics can question your 
conclusions or theory tests if you rely exclusively on p values and tests of significance 
and ignore effect sizes. It is best to report and directly address effect sizes in your 
research.  

Issue 14: Reporting of Indices of Sampling Error  

As discussed in the section on sample size, it is good practice to report indices of 
sampling error either in the form of confidence intervals or margins of error. Critics can 
question your conclusions or theory tests if there is evidence of large amounts of 
sampling error or “noise” in your parameter estimates even if the results are “statistically 
significant, p < 0.05.”  
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Issue 15: Familywise Errors 

When a researcher conducts multiple contrasts or multiple significance tests, a problem is 
that the Type I error rate can inflate across those tests. Critics can raise this issue. 
Consider a coin flipping analogy. If we flip a coin, there are two possible outcomes that 
can occur, one of which is a “head.”  For the sake of exposition, lets treat obtaining a 
head as an “error.”  The likelihood of observing a “head” or an “error” on a on a given 
coin toss is 1/2 = 0.50. If we flip a coin twice, there are four possible outcomes that can 
occur, (1) a “head” on the first flip followed by a “head” on the second flip, (2) a “head” 
on the first flip followed by a “tail” on the second flip,  (3) a “tail” on the first flip 
followed by a “head” on the second flip,  (4) a “tail” on the first flip followed by a “tail” 
on the second flip. Note that a “head” occurs on three of the four flips, so the  probability 
of a “head” occurring on at least one of the flips is 3/4 = 0.75. Even though the 
probability of a “head” is 0.50 on a given flip, the probability of observing at least one 
“head” across two flips is 0.75. A similar process operates with multiple contrasts in 
statistics. The error rate on a given flip is analogous to the per comparison error rate. The 
error rate across flips is analogous to the familywise error rate.  

Some methodologists feel that controls for inflated familywise error rates should be 
invoked whenever multiple contrasts are performed. However, doing so comes at a cost. 
Using such controls reduces statistical power for a given comparison, with the result 
possibly being an unacceptably high rate of Type II errors. i.e., missing an effect that is 
important. If Type II errors are indeed important, the reduced statistical power for 
familywise error rate corrections may be unacceptable. In research areas where sample 
sizes tend to be small, the issue is particularly germane because statistical power is low to 
begin with.  
 Decisions about the invoking familywise error rate controls are complex and you 
will encounter different recommendations about the need to do so (see, for example, our 
discussion of Bayesian epistemology in Chapter 15). Critics can criticize you for failing 
to adjust for familywise error and they can criticize you for adjusting for familywise 
error. You need to think carefully about the orientation you take with respect to this issue.  

Issue 16: Accepting the Null Hypothesis 

Situations occur where researchers are interested in declaring the equivalence of groups 
in terms of their mean scores on variables or in terms of percentages. It turns out that the 
popular null hypothesis testing approach to statistics that most of us use is not well suited 
to making such declarations. Consider the case where a researcher wants to test if there 
are mean differences in starting salaries for new Assistant Professors at major universities 
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in the United Sates as a function of gender. The traditional null hypothesis is that the 
difference between the two population means is zero: 
 
H0: µM - µF = 0 
 
The alternative hypothesis is that the difference between the two populations is not zero: 
 
H1: µM - µF ≠  0 
 
If we collect sample data, analyze it, and reject the null hypothesis (p < 0.05), then we 
confidently conclude that the gender difference in salary is not exactly zero. We favor H1. 
If the statistical test yields a statistically non-significant result, then it is not the case that 
we can accept the null hypothesis (H0) and conclude that there is no gender difference in 
average salaries. The null hypothesis specifies that the difference in salaries for males and 
females is exactly zero and there simply is no way to know with any reasonable degree of 
certainty that the difference in salaries equals a single, exact value, i.e., zero, because of 
the inevitable presence of sampling error. Even if the observed mean difference is zero, 
we can’t conclude that the true population difference is zero, again, because of the 
presence of sampling error. We find ourselves in an uncomfortable position of suspended 
judgment: We can’t say that the gender difference in salaries is not zero (because p > 
0.05), but we also can’t say that there is not a gender difference. 
 Critics can raise objections to your conclusions or to theory tests if you have 
inappropriately accepted the null hypothesis by concluding no group difference or no 
association based on p values. To be sure, you can state that the data are not sufficient for 
you to confidently conclude there is a group difference or association. But, technically, 
you cannot accept the null hypothesis of no difference. Specialized statistical approaches 
for declaring equivalence between groups have emerged outside of traditional null 
hypothesis testing, in a branch of statistics known as equivalence testing (Lakens,  Scheel 
& Isager, 2018; Wellek, 2010). If you are interested in asserting group equivalence, 
consider using these approaches. 

ADDITIONAL CONSIDERATIONS (FOR METHODS ABD THEORY) 

In this section, we briefly mention five additional issues you will want to take into 
account when trying to design effective theory tests.  

Issue 1: Weak Conceptual Logic Models 

In Chapter 4, we discussed the importance of building strong conceptual logic models for 
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one’s theory. Critics also can question your conclusions and theory tests by attacking 
your conceptual logic models. See Chapter 4 and the supplemental materials for Chapters 
3 and 4 for strategies to address this issue.  

Issue 2: Poorly Defined Constructs and Relationships 

Critics can question the clarity and appropriateness of your conceptual definitions. Use 
the strategies described in Chapter 5 to be clear about your concepts. They also can 
question ambiguity about variable relationships. See Chapter 6. 

Issue 3: Generalizing Beyond One’s Data 

Critics can complain about researchers generalizing beyond their data by extending their 
conclusions to other populations or contexts that the critic questions are applicable. 
Editors and reviewers often encourage you to speculate about the implications of your 
work, but you also must be cautious about not taking this matter too far. This issue is 
related to the one we identified earlier for the sample-then-population sampling strategy.    

Issue 4: Inadequate Literature Review and Theory Interpretation 

A high quality and comprehensive literature review is important to any theory test. Critics 
can raise issues about prior literature that you have failed to consider or your treatment of 
that literature in superficial ways. They also can argue that you have misinterpreted past 
research and relevant theories. You need to be thorough and accurate in your 
consideration of prior work and theories.        

Issue 5: Alternative Explanations  

Before engaging in any research to evaluate a theory, we always make a point of stepping 
back and thinking about every possible alternative explanation to our theory and theory 
tests. We encourage you to engage in a final “thought session” in which you take a big 
picture view and try to identify any final alternative explanations that may undermine 
your theory test and then attempt to deal with them.  

CONCLUDING COMMENTS AND A SUMMARY 

We have described a long list of factors that can compromise research design and theory 
tests. Most of these factors are as applicable to qualitative and mixed methods research as 
they are to quantitative research. When we design studies, we use a “checklist” of the 
above factors that we systematically work through to ensure our research addresses every 
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one of them. We stress that there may be other issues that invariably come into play 
depending on the topic you are studying. Nevertheless, here is the checklist of factors for 
you to address that summarizes the contents of this primer: 

1. In the spirit of Campbell and Stanley, address possible testing effects 

2. In the spirit of Campbell and Stanley, address possible history effects 

3. In the spirit of Campbell and Stanley, address possible instrument change 

4. Address possible regression to the mean 

5. In the spirit of Campbell and Stanley, address possible maturation effects 

6. In the spirit of Campbell and Stanley, address possible experimental mortality effects 

7. In the spirit of Campbell and Stanley, address possible selection effects 

8. In the spirit of Campbell and Stanley, address possible interactions of the above (e.g., 
testing by treatment interactions) 

9. If using a population-first, sample-second approach, address any factors that 
undermine obtaining a reasonable approximation to a random sample from the population 

10. If using a sample-first, population second approach, address any factors that limit too 
much the population one can generalize to 

11. Specify inclusion/exclusion criteria 

12. Address possible self-selection into the study 

13. Address possibly using too heterogeneous a population/sample 

14. Address possibly using too homogenous a population/sample 

15. If sampling weights are available or derived, address the appropriateness of their use 

16. Address the reliability of your measures 

17. Address any systematic error that may bias your measures 

18. Address the validity of your measures 
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19. Ensure your measures provide an appropriate mapping of your constructs 

20. Address whether your control group is appropriate 

21. Address how to deal with possible non-random assignment to conditions 

22. Address possible attrition bias, including treatment dropouts and assessment dropouts 

23. Address possible carry-over effects 

24. Address possible issues of assessment timing 

25. Address possible experimenter bias  

26. Address possible demand characteristics  

26. Address treatment fidelity and manipulation effectiveness 

27. Address possible contamination issues  

28. Address possible range restriction issues  

29. Address possible low task motivation and boredom effects 

30. Address issues of ecological validity, as appropriate 

31. Ensure you have good data management in place 

32. Address issues of power, confidence interval width, asymptotic theory, and 
covariance stability for choosing a sample size 

33. Address possible self-selection into the study 

34. Address outliers 

35. Address assumption violations of statistical tests 

36. Address clustering, as applicable 

37. Address missing data using modern methods 

38. Address treatment dropouts using ITT, per protocol, or CACE analysis 

39. Ensure analysis is metric appropriate 
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40. Address endogeneity issues 

41. Address the many forms of aggregation bias, as appropriate 

42. Address misspecification of functional forms 

43. Avoid selective reporting and p hacking 

44. Report effect sizes 

45. Report indices of sampling error 

46. Address familywise errors 

47. Do not accept the null hypothesis (without equivalence testing) 

48. Address the quality of your conceptual logic model 

49. Ensure your constructs are clearly defined 

50. Address issues of generalizing beyond one’s data  

51. Address the comprehensiveness and quality of the literature review and your 
interpretation of that literature and your theories 

52. Address all alternative explanations 

When evaluating research, you also can use this checklist as a framework for 
critiquing the quality of a study. If you invoke a given criticism, you should have a well-
developed rationale for it, be able to make a convincing case that it is operative, and be 
able to state how it could potentially change study conclusions. It is not fair to “wave the 
wand” of a given criticism and dismiss a study without such elaboration. Your critique 
should be thoughtful, compelling, incisive, and meaningful. When critiquing studies, we 
also seek to be constructive and suggest ways to overcome shortcomings. We approach 
our reading of research by trying to take away the positives of it rather than focusing on 
the negatives, but also being sure to keep high scientific ideals in mind.  
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