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Regression Mixtures 
 

This primer focuses on regression mixture modeling. We assume you have read the 
section on it in Chapter 11, but repeat parts of it here to set context. We also assume you 
are familiar with multiple regression. 

The traditional regression model expresses an outcome, Y, to be a linear function of 
predictors (in this case, X1 and X2) in accord with a linear equation: 

Y = α + β1 X1 + β2 X2 + ε 

where α is the intercept, the β are regression coefficients, and ε is an error term. When 
we conduct a regression analysis, we implicitly assume the individuals represent a single 
population with common parameter values in the equation. It is possible, however, that 
the population is composed of mixtures of sub-populations that have different parameter 
values, namely different regression coefficients and/or different intercepts. In essence, the 
population is a mixture of two or more sub-populations (also called segments) with one or 
more distinct regression coefficients or intercepts characterizing the relationship between 
Y and the various X. In such a scenario, the population regression model can be 
misleading and mischaracterize the separate population segments. If the source of such 
population mixing is known, then it can be modeled through interaction terms in the 
regression equation. In cases where the source of mixing is unknown, one can seek to 
identify the population segments on an exploratory basis using regression mixture 
modeling (Vermunt & Magidson, 2004; Muthén & Asparouhov, 2009). Regression 
mixture modeling combines conventional regression models with methods known as 
latent class models (Lazarsfeld & Henry, 1968; McCutcheon, 1987) in an attempt to 
identify unknown population mixtures empirically. Regression mixture modeling is 
particularly useful when the sources of coefficient heterogeneity have not been 
thoroughly thought out a priori. Regression mixtures can provide evidence for the 
existence of subgroups that then can be further studied in future research. The central task 
of regression mixture analysis is to identify the number of heterogeneous segments there 
are and classify individuals into the different segments. The task of the analyst then 
becomes to give substantive meaning to the identified segments. 

In this primer, we first describe the mechanics and logic of regression mixture 
modeling. Next, we consider how one decides on the number of heterogeneous segments 
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that exist in a population relative to the regression model being explored. This requires 
providing background on statistics derived from information theory, namely the Akaike 
Information Criterion and the Bayesian Information Criterion. After providing an 
intuitive sense of these statistics, we discuss confusion matrices and their role in 
identifying the number of heterogeneous segments in a population. Finally, we consider 
the issue of giving the segments substantive meaning and interpretation.   

REGRESSION MIXTURES: THE MECHANICS 

Regression mixture models use a categorical latent variable to describe the means and 
covariances of observed data (Magidson & Vermunt, 2004), with the latent variable 
defining a mixing of subpopulations each with distinct multivariate distributions of the 
observed variables. The latent variable is often called a latent class variable. In 
regression mixture modeling, the latent class variable is thought to be an unknown 
moderator variable relative to one or more of the parameters in the regression model of 
interest. To apply the method, a researcher specifies the number of subpopulations, 
segments, or levels of the latent class variable that are thought to exist. Since this is rarely 
known, the regression mixture analysis typically is applied to multiple models where the 
models vary only in the number of classes of the latent class variable. An analyst might 
test a one class model, a two class model, a three class model, and so on and then make a 
judgment about which of the models best account for the data. The chosen model then 
dictates the number of levels of the unknown moderator, i.e., the unknown latent class 
variable. The mathematics of the approach permit the analyst to estimate the regression 
equation for each class in the chosen model, the proportion of people in each class, and 
the likelihood that a given person in the data is a member of each class. Consideration of 
the statistical theory underlying regression mixture modeling is complex and beyond the 
scope of this primer. Interested readers are referred to Magidson and Vermunt (2004). 

Individuals in the different latent classes might differ from one another qualitatively 
and, accordingly, represent “true” subpopulations in the larger population, such as 
different ethnic groups or different religious affiliations. Alternatively, the different 
classes might approximate an underlying quantitative variable represented as discrete 
categories. As such, the classes might indicate either qualitative differences between 
individuals, quantitative differences between individuals, or a combination of the two 
(Bauer & Curran, 2003a, 2003b, 2004). Interpretation of the substantive meaning of the 
different classes should consider such possibilities and, ideally, evidence should be 
brought to bear to empirically validate the interpretations, as discussed below.  

Regression mixture modeling makes the following assumptions: (1) the effect of the 
predictors on the outcome are linear (although this assumption can be relaxed), (2) 
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observations in the population are independent, (3) the population error scores are 
normally distributed within each class, and (4) the regression predictors have non-
consequential measurement error. The magnitude of the error variances (the variance of 
the ε) can differ across the classes. Research suggests that violation of the normality 
assumption can bias parameter estimates, in which case remediation methods may be 
needed (Van Horn et al., 2012; George et al., 2013). For a comparison of regression 
mixture modeling to traditional product term analysis, see Van Horn et al. (2015). 

INFORMATION INDICES AS A STRATEGY FOR MODEL CHOICE 

When choosing between the different models to determine the number of classes, a 
commonly used set of comparative fit indices is based in a statistical theory known as 
information theory. Two such indices are the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC). In general, researchers calculate an AIC index 
and/or a BIC index for the different models and then choose the model that has the best 
BIC or AIC value. In this section, we digress a bit and develop the logic of these indices, 
taking a few liberties in the interest of pedagogy. We first develop the concept of a log 
likelihood, a concept that is central to both the AIC and BIC. We then describe the model 
comparison process for the AIC, followed by a consideration of that process for the BIC.  

Log Likelihoods 

Suppose we have a very large population and half the population is male and half the 
population is female. The probability of a randomly selected case being a male is 0.50 
and this also is true for being a female. Stated more formally: 

p(male) = 0.50       p(female) = 0.50 

If we randomly select two cases, the probability of a given joint result across the two 
selections or “trials” is the product of their probabilities. As such, the probability of 
observing two males is 

p(male)*p(male) = (0.50)(0.50) = 0.25 

This is known as the multiplication rule for independent trials. Stated more formally, let 
p(A) = the probability of event A on a trial and p(B) = the probability of event B on a 
second (independent) trial. The joint probability of both events A and B is the product of 
the individual probabilities p(A) p(B). To be more concrete, there are four combinations 
that can result, each with a probability of 0.25: 
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Probability of a male on the first trial followed by a male on the second trial:        0.25 
Probability of a male on the first trial followed by a female on the second trial:     0.25 
Probability of a female on the first trial followed by a male on the second trial:     0.25 
Probability of a female on the first trial followed by a female on the second trial:  0.25 
 
and if we do not care about the order of appearance in the trials, 
 
Probability of two males:                  0.25 
Probability of a male and a female:  0.50 
Probability of two females:               0.25 
 

We now review another facet of statistical theory that we will make use of. If we 
know that a very large set of scores is normally distributed with a certain mean and 
standard deviation, then we can use knowledge of the probability density function for a 
normal distribution to compute the probability of obtaining any given value when we 
randomly select a case from that distribution. The density formula is   

2-.5(x - μ)
2σ

2

1f(x) =   e 
2πσ

  

 

 
where x is the score value in question, μ is the mean of the distribution, σ is the standard 
deviation of the distribution, π is the mathematical constant pi, e is the constant 
associated with the Naperian logarithm, and the density describes the height of the 
normal curve at the value of x. We can use this density in conjunction with calculus to 
calculate the probability of observing the score in question. As an example, if scores are 
normally distributed with a mean of 100 and a standard deviation of 13.77, then, using 
the above formula, we find that the likelihood of a score of 99 is 0.0289. For a score of 
87, it is 0.0186.1   

Suppose we randomly select two scores from an extremely large population where 
scores are normally distributed with a mean of 100 and a standard deviation of 13.77. The 
probability that the scores will be 87 and 99, using the joint probability theorem 
described above, is (0.0289)(0.0186) = 0.00053754. Stated another way, the probability 
of observing these two data points given that the mean is 100 and the standard deviation 

                                                 
1 Technically, the probability of observing an exact value for a continuous variable is zero. We compute the 
likelihoods here by focusing on the interval defined by the real limits of the number (e.g., 98.5 to 99.5) in 
conjunction with the integral that scales the area under the curve to 1.00.   
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is 13.77 (and assuming a normal distribution) is 0.00053754, with further adjustments to 
account for disinterest in the order of selection. 

Suppose we randomly sample 100 data points from the population and calculate the 
likelihood of those 100 data points occurring using a strategy similar to the above 
method. The strategy would involve multiplying each probability by one another, with 
the result being a very, very small number. To make things more manageable and so as 
not to work with such small numbers, statisticians transform the final result by 
calculating the log of it, yielding what is called a log likelihood. The log likelihood is 
indicative of (but not equal to) the probability of obtaining the sample data given a 
“model” that states (a) the scores are normally distributed, (b) the mean is 100, and (c) 
the standard deviation is 13.77.  

Log likelihoods are negative because the log of numbers less than 1.00 is always 
negative. For example, the natural log of 1.00 is zero, the natural log of 0.50 is -0.69, the 
natural log of 0.25 is -1.39, and the natural log of .01 is -4.61.2  

Now, let’s turn the above situation on its head. Suppose we have a set of 100 data 
points but we do not know the mean and standard deviation of the (assumed normal) 
distribution from which they come. We might, based on theory or logic, decide to “test” a 
model that states the mean is 95 and the standard deviation is 15. Using the probability 
density function from above and the strategies described, we can calculate the log 
likelihood for this model. The closer the log likelihood value is to zero (i.e., the less 
negative it is), the more likely the data came from the postulated model. We might 
formulate a second (competing) model that the mean is 100 and the standard deviation is 
13.75 and calculate the log likelihood for it. Again, the closer the value of the log 
likelihood for this model is to zero, the more likely it is the data came from the model 
positing a mean of 100 and a standard deviation of 13.75. 

We can compare the log likelihood values for the two models and we might find 
that one model results in a log likelihood closer to 0 than the other model. The model 
with the log likelihood closer to zero is more likely to have produced the data, hence we 
would prefer it to the model with the more negative log likelihood. Such is the 
fundamental logic of choosing between models based on their relative log likelihoods: 
We calculate the log likelihood of competing models and then choose the model with the 
log likelihood that is closest to zero. To be sure, the above explanation is simplistic and 
glosses over technicalities, but hopefully it conveys the general idea of comparing log 
likelihoods for two models.  

As an aside, the above logic also is central to the well-known method of estimation 
                                                 
2 Actually, some operationalizations of log likelihoods can yield positive numbers, but discussion of this point is 
beyond the scope of this primer.  
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called maximum likelihood estimation. In this approach, to estimate the mean of a 
distribution, one conceptually posits different models each representing a possible 
population mean value, calculates the likelihood of observing the data given the “model,” 
and then selects the value/model that has the maximum likelihood.  

Model Comparisons using the AIC 

The AIC is an index of model likelihood or “model fit” based on a log likelihood. A 
common representation of it is 

AIC = (-2) (LL) + 2k            [1] 

where LL is the log likelihood associated with the model in question and k is the number 
of estimable parameters in the model (such as when we estimate an intercept and the 
various regression coefficients). By multiplying the log likelihood by -2, the AIC 
essentially becomes a positive number, with larger numbers indicating lower likelihoods 
of the model. The AIC also includes what is often referred to as a penalty function for 
lack of parsimony, namely 2k. If the model has many parameters in it that must be 
estimated, then the AIC will be larger, everything else being equal. With the AIC, model 
parsimony is rewarded.3  In general, the smaller the value of AIC, the better the “fit” of 
the model to the data. To make this intuitive, if the probability of the data given the 
model is 0.25, the log likelihood will be -1.39 and multiplying this by -2 yields 2.78. If 
the probability of the data given the model is much higher, say 0.50, the log likelihood is 
-0.69 and multiplying this by -2 yields 1.38. So, the smaller the value, the better the 
model. To this term, a penalty function is added that inflates the value of AIC for models 
that estimate more parameters.       

There are many variations of the AIC. For example, some researchers use the above 
formula but with a small sample bias correction incorporated into it. This is sometimes 
referred to as AICc. The nuances of the different versions of the AIC are described in 
Burnham and Anderson (2004). Do not be surprised if for some software you observe 
AIC indices that are quite different in magnitude from other software. The important idea 
for all them is that we can compare different models using their respective AICs and then 
choose models that have “better” AICs when compared to other models.  
  Sometimes we compare more than two models, i.e., we might compare three, four 
or five models. When comparing more than two models, it is common to first identify the 
model with the lowest AIC value (which is the best fitting model of all the models being 
                                                 
3 Technically, the 2k term is part of the mathematical theory underlying the derivation of AIC. Also, choosing the 
value of -2 to multiply the LL by is not arbitrary. This value has a clear rationale. See Burnham and Anderson 
(2004).   
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considered). One then calculates the difference in AIC values between each of the models 
and this best fitting model (subtracting the latter from the former). For the best fitting 
model, the difference will be zero and for all other models, it will be positive in value, 
with the larger the disparity, the worse the fit of the target model relative to the best 
fitting model. 

General rules of thumb have been proposed to contextualize the magnitude of the 
difference in AICs between models (see Burnham & Anderson, 2004). The most common 
rules of thumb are as follows: 
 
1. If the disparity in AICs is < 2, then the two models have about the same support   
 
2. If the disparity in AICs is > 2 and < 4, then the better fitting model has positive support 
relative to the model it is compared with   
 
3. If the disparity in AICs is > 4 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   
 
4. If the disparity in AICs is > 10, then the better fitting model has very strong support 
relative to the model it is compared with. 
 
Of course, one must be careful when applying rules of thumb like this because they may 
not apply in all contexts. Indeed, some analysts object to their specification, arguing that 
they can result in the same rigid and counterproductive use of a criterion like “p < 0.05” 
that plagues null hypothesis testing frameworks.  

Another standard for comparing two models vis-a-vis the AIC is to examine what is 
called the evidence ratio. Let D = the AIC for the worse fitting model of the two models 
minus the AIC for the better fitting model of the two models (and let e be the traditional 
Naperian constant). The evidence ratio is defined as  

ER = 1 / e(-D / 2) 

where ER stands for “evidence ratio.”  It indicates how much more likely the better 
fitting model is (given the data) than the worse fitting model (given the data). For 
example, if the AIC for the better fitting model is 100 and for the worse fitting model it is 
102, then the evidence ratio is  

1 / e -(102-100) / 2) = 2.63  
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The better fitting model is 2.63 times more likely to have yielded the data than the model 
it is being compared with.  

Finally, some researchers normalize AIC differences relative to all models being 
compared so that they sum to 1. These are called Akaike weights and indicate the “weight 
of evidence” in favor of a model relative to all models in the comparison set. Akaike 
weights are distinct from evidence ratios because Akaike weights are impacted by the 
particular set of models being compared when the number of models is greater than two. 
Let us first describe how Akaike weights are calculated and then we will make them 
more concrete with an example.  

To calculate the Akaike weight, each model is assigned an index of its likelihood 
relative to that of the best fitting model using the value from the denominator of the 
evidence ratio, e(-D/2), as the index. Let T = the sum of the e(-D/2) values across all the 
models being considered. Then the Akaike weight for a given model is defined as  

e(-D/2) /  T 

The weight ranges from 0 to 1.00, with higher values favoring the model in question.  
To make this concrete, suppose we fit five different models to a set of data. Here is 

a table with the AICs, the differences between the model AIC versus the model with the 
lowest AIC, and the Akaike weights (w): 
 
Model   AIC    D          e(-D/2)  w = e(-D/2)/T 
 
     1   204   2     0.3678     0.2242 
     2   202   0     1.0000     0.6094 
     3  206   4     0.1353     0.0824 
     4   206   4     0.1353     0.0824 
     5   214   12     0.0024     0.0015 
 
  Sum             T = 1.6408     1.0000 
 
The sum of the weights across all five models is 1.00. The weights represent a continuous 
measure of relative strength of evidence for each model. Each weight can be crudely 
interpreted as the probability that the model is the best model among the set. In the 
present case, the data support Model 2.  

The basic idea when evaluating models is to examine multiple criteria, including the 
magnitude of the difference in AICs, the evidence ratios, the Akaike weights, and the 
substantive meaning/logical coherence of the models, in order to choose the best one.  
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Model Comparisons using the BIC 

We describe the logic of the BIC using the Schwartz BIC, which is formally defined as  
 
BIC = -2 LL + ln(N) k           [2] 
 
where k = the number of estimable parameters in the model, N = the sample size, and LL 
= the model log likelihood. Like the AIC, the smaller the BIC, the better the model fit, 
everything else being equal. Like the AIC, there is a penalty function for lack of 
parsimony, but the penalty is different than the AIC. The penalty is somewhat harsher for 
the BIC as opposed to the AIC. There are other instantiations of the BIC, and we discuss 
these below. For current purposes, we use the Schwartz formulation. 

Like the AIC, it is not uncommon for the model with the smallest BIC to be used as 
a reference point for comparing models, with a common practice being to calculate the 
difference between each model in the model set and the model with the best BIC, like we 
did for the AIC. For the best fitting model, this difference will be zero. 

To evaluate models in terms of BIC differences, general rules of thumb are (see 
Raftery, 1995):  
 
1. If the BIC disparity < 2.2, then the better fitting model and the model it is compared 
with have about the same support   
 
2. If the BIC disparity > 2.2 and < 6, then the better fitting model has positive support 
relative to the model it is compared with   
 
3. If the BIC disparity > 6 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   
 
4. If the BIC disparity > 10 then the better fitting model has very strong support relative 
to the model it is compared with   

For similar but slightly different standards, see Wasserman (1997). 
One also can calculate what is called a Bayes Factor (BF) for each model relative to 

the best fitting model. It is defined as  

BF = e(D’/2) 

where D’ is the BIC difference between the target model and the best fitting model. The 
Bayes factor is the probability that the model with the lower BIC produced the data 
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divided by the probability the model in question produced the data. For example, a BF = 
10 means it is 10 times more likely the model with the minimum BIC produced the data 
than the model in question.  
  Finally, a relative model weight, analogous to the Akaike weight, can be computed 
by normalizing model likelihoods relative to all models in the comparison set so that they 
sum to 1. Let D = the difference in the BIC for the model in question minus the value of 
the BIC for the best fitting model, T = the sum of the index  e(-D/2) across each model. The 
relative weight for a model is 

e(-D/2) / T 

The weight ranges from 0 to 1.00, with higher values favoring the model. Again, the sum 
of the weights across models is 1.00. 

As with the AIC, the basic idea when evaluating models is to examine multiple 
criteria, including the magnitude of the difference in BICs, the Bayes factors, the relative 
weights, and the substantive meaning/logical coherence of the models, in order to choose 
the best one.  

You will encounter variants of the BIC, but the basic logic in applying them is the 
same. For example, like the AICc, there is a sample size adjusted BIC that is similar to 
Schwartz’ BIC, but it applies a somewhat milder penalty function (Sclove, 1987). There 
also are variants of both the AIC and BIC to deal with dispersion issues in count 
regression models (called QAIC and QBIC).  

Which Method is Better, AIC or BIC? 

A debated topic in statistics is which approach to model comparison is better, one based 
on AICs or one based on BICs. There are advocates on both sides of the matter and we 
dare not venture into this controversy here. The BIC tends to favor simpler models more 
so than the AIC. This can be both a strength and a weakness. Interested readers are 
referred to Burnham and Anderson (2004), Yang (2005), and Kuha (2004). Kuha argues 
for the use of both indices. 

An issue with both approaches is that researchers can be lulled into thinking that the 
best fitting model within a set of models is the true model. This is not necessarily the 
case. Researchers can choose the best of a set of wrong models, which is not our goal.  
 In regression mixture modeling, the choice of the number of latent classes for a 
model is often guided by the AIC and BIC values of the models with differing numbers 
of latent classes.  
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ADDITIONAL CRITERIA FOR MODEL CHOICE IN MIXTURE REGRESSION 

In addition to the AIC and BIC, another consideration for evaluating model adequacy 
derives from what is known as a classification analysis for the mixture model. For each 
person in an analysis of a given model, regression mixture modeling provides an estimate 
of the probability that the individual is in each of the latent classes specified by the 
model. For example, in a three subgroup/class model, a given respondent will be assigned 
a probability that s/he is in subgroup 1, a probability that s/he is in subgroup 2, and a 
probability that s/he is in subgroup 3. The three probabilities for a given individual will 
sum to 1.0. The individual is classified into the subgroup that s/he has the highest 
probability of being in. A desirable model is one where individuals tend to have a high 
probability of being in one subgroup, but low probabilities of being in the other 
subgroups, i.e., the classification is well-differentiated. Here is an example classification 
analysis for a two subgroup mixture regression model: 
 
 RESPONDENTS PREDICTED TO BE IN SUBGROUP 1 

      Mean probability of being in group 1 = .92171 
      Mean probability of being in group 2 = .06653 
 
   RESPONDENTS PREDICTED TO BE IN SUBGROUP 2 

      Mean probability of being in group 1 = .07829 
      Mean probability of being in group 2 = .93347 
 
For those individuals assigned to subgroup 1, the average probability they had of being in 
subgroup 1 was 0.9217 whereas the average probability they were in subgroup 2 was 
only 0.06653. This is a well-differentiated pattern. The same is true for individuals 
assigned to subgroup 2. This classification tool is sometimes called a confusion matrix. 
 It is helpful to examine scatterplots where mixture modeling would yield well-
differentiated versus less well-differentiated patterns in the confusion matrix. Figure 4.1 
presents examples using a bivariate regression relating the degree of exposure to an 
environmental chemical (X) to beneficial response to a vaccine (Y). There are two 
segments in the data.  Figure 4.1.a is well-differentiated because there is virtually no 
overlap between the two segments. Figure 4.1.b is less well-differentiated because of the 
overlap of the two segments in the middle of the plot. Overlapping individuals could be 
classified into either segment. Figure 4.1.c is well-differentiated because of non-overlap 
of the two segments but note that the regression coefficients for the two segments are 
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essentially the same (because the slopes are similar); it is the intercepts that differ 
(because one segment is elevated above the other segment).  
 
 
(a) Well-differentiated pattern 1 

 

 
 
(b) Less well-differentiated pattern  
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(c) Well-differentiated pattern 2 

 

 

FIGURE 4.1. Examples of Differentiation of Segments 
 
 
 The dynamics of Figure 4.1.b are a reason some statisticians argue not to rely too 
heavily on confusion matrices to make decisions about the number of segments. There 
clearly are two distinct segments in this Figure and to combine them could be misleading. 
However, the confusion matrix will show a pattern that is not well-differentiated because 
there is a subgroup of individuals (in the middle) for whom classification is ambiguous. 
Such are the realities of the real world and, the argument goes, this is not a reason to 
reject the existence of the two segments.  

Regression mixture models also provide estimates of the proportion of the 
population that is in each subgroup. This is useful because the size of the subgroup may 
be so small that the segment is of little interest. One might orient towards a group that 
represents 50% of the population differently than one that represents only 1% of the 
population. Sometimes an analyst is reluctant to move to a model with more classes if the 
new model produces additional classes that are very small in size.    

Yet another criterion used by the analyst to settle upon a model is the substantive 
meaningfulness of adding more classes. If as a result of increasing the number of classes 
by 1, a particular subgroup is split into two subgroups that make more conceptual sense 
in a broader theoretical context, then one prefers the more complex model. However, if 
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the division that occurs by adding a class yields a class that makes no substantive sense, 
one might be reluctant to adopt the more complex model. 

GIVING MEANING TO THE LATENT CLASSES 

Once the number of classes is determined, regression mixture analysis reports the 
estimated regression equation for each class. These equations can help give substantive 
meaning to the classes. For example, a theory of vaccination behavior might hold that the 
intention (I) to vaccinate one’s child against the measles is impacted by two classes of 
variables, (1) what a parent sees as the positives and negatives of having his or her child 
vaccinated (called the person’s personal attitude (PA) toward getting a vaccination), and 
(2) the normative pressures from important others (N) the parent feels to obtain or not 
obtain a vaccination. Suppose all 3 constructs (I, PA and N) are measured on a 0 to 10 
metric with higher scores favoring obtaining a vaccination. A regression mixture analysis 
might yield 3 classes/segments with the following regression equations (note: * indicates 
p < 0.05): 

Segment 1:  I = 0.02 + 1.01* PA + 0.01 N 
Segment 2:  I = 0.01 + 0.01 PA + 1.02* N 
Segment 3:  I = 0.02 + 0.50* PA + 0.50* N 

The first segment is people whose intent to obtain a vaccination is primarily impacted by 
their personal attitudes. The second segment is people whose intent to obtain a 
vaccination is primarily impacted by the normative pressures of important others. The 
third segment is people whose intent to obtain a vaccination is impacted equally by both 
personal attitudes and normative pressures. This mixture analysis suggests different 
strategies for encouraging people to obtain vaccinations may be needed for different 
segments of the population; one strategy is needed to address personal attitudes for 
segment 1, a second strategy is needed to address normative pressures for segment 2, and 
both of these determinants need to be addressed for segment 3.  

Suppose we learn from the regression mixture analysis that 62% of the population is 
in segment 1, 8% of the population is in segment 2, and 30% of the population is in 
segment 3. This information also might be useful for decisions about the logistics 
surrounding educational strategies about the vaccine. For example, the sizes of segments 
1 and 3 might lead us to prioritize these groups. Also of interest is the mean intention for 
each of the classes. If the intent to obtain a vaccination is generally high for segment 2 
but low for segments 1 and 3, that might be another reason for prioritizing segments 1 
and 3. 
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 Another type of analysis that can give meaning to the classes is to identify 
correlates of class membership external to the mixture analysis. For example, we might 
find that membership in the second segment is correlated with elevated scores on an 
impression management scale, being female, being older, and having anxiety, all of 
which past research has shown relate to conformity. Such analyses should take into 
account the probabilistic nature of group membership, perhaps through the use of weights 
based on those probabilities (Bakk, Oberski & Vermunt, 2014).   

THE EXPLORATORY NATURE OF REGRESSION MIXTURE MODELING 

The main text of Chapter 11 discussed regression mixture modeling as an exploratory 
method of data analysis to facilitate theory construction. Because of its exploratory 
nature, in more traditional research contexts, it generally is useful to replicate one’s 
results from regression mixture modeling with independent samples to increase one’s 
confidence in segment identification.  

CONCLUDING COMMENTS 

When making conclusions from multiple regression analysis, we often implicitly assume 
the individuals studied represent a single population with common parameter values in 
the equation. It is possible, however, that the population is composed of mixtures of sub-
populations that have different regression coefficients and/or a different intercept, that is  
the population is a mixture of two or more heterogeneous segments with distinct 
coefficients. In such cases, the population regression model can be misleading and 
mischaracterize the separate population segments. Regression mixture modeling is an 
exploratory method for detecting the presence of heterogeneous segments in a population. 
It conceptualizes the different segments as an unknown categorical latent class variable 
that moderates the effect of predictors on the outcome. Application of regression mixture 
modeling requires comparative tests of models that vary in the hypothesized number of 
distinct segments in the population. These comparative tests often make use of the 
Akaike Information Criterion and the Bayesian Information Criterion. As well, 
researchers examine a confusion matrix, the size of the segments, and the substantive 
meaning of the segments to make decisions about the most plausible number of segments 
to focus on. Regression mixture modeling is a useful exploratory method for potentially 
enriching theory surrounding moderated relationships.   
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